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Basic properties of Boolean functions
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Boolean functions

De�nition. A Boolean function of n variables is a function from Fn2
into F2.

Truth table of a Boolean function.

x1 0 1 0 1 0 1 0 1

x2 0 0 1 1 0 0 1 1

x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

Value vector of f : word of 2n bits corresponding to all f(x), x ∈ Fn2 .
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Vectorial Boolean functions

De�nition. A vectorial Boolean function with n inputs and m outputs

is a function from Fn2 into Fm2 :

S : Fn2 −→ Fm2
(x1, . . . , xn) 7−→ (y1, . . . , ym)

Each function

Si : (x1, . . . , xn) 7−→ yi

is called a coordinate of S.

Example.

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1

S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0

S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1

S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0
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Hamming weight of a Boolean function

Hamming weight of a Boolean function.

The Hamming weight of a Boolean function f , wt(f), is the Hamming

weight of its value vector.

A function of n variables is balanced if and only if wt(f) = 2n−1.

Proposition. A vectorial function S with n inputs and n outputs

is a permutation if and only if any nonzero linear combination of its

coordinates

x 7−→
n⊕
i=1

λiSi(x), λ = (λ1, . . . , λn) 6= 0

is a balanced Boolean function.
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Algebraic normal form (ANF)

Monomials in x1, . . . , xn:{
xu, u ∈ Fn2

}
where xu =

n∏
i=1

x
ui
i .

Example: x1
1x

0
2x

1
3x

1
4 = x1x3x4 = x1011.

Proposition.

Any Boolean function of n variables has a unique polynomial

representation:

f(x1, . . . , xn) =
⊕
u∈Fn2

aux
u, au ∈ F2.

Moreover, the coe�cients of the ANF and the values of f satisfy:

au =
⊕
x�u

f(x) and f(u) =
⊕
x�u

ax,

where x � u if and only if xi ≤ ui for all 1 ≤ i ≤ n.
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Example

x1 0 1 0 1 0 1 0 1

x2 0 0 1 1 0 0 1 1

x3 0 0 0 0 1 1 1 1

f(x1, x2, x3) 0 1 0 0 0 1 1 1

a000 = f(000) = 0

a100 = f(100)⊕ f(000) = 1

a010 = f(010)⊕ f(000) = 0

a110 = f(110)⊕ f(010)⊕ f(100)⊕ f(000) = 1

a001 = f(001)⊕ f(000) = 0

a101 = f(101)⊕ f(001)⊕ f(100)⊕ f(000) = 0

a011 = f(011)⊕ f(001)⊕ f(010)⊕ f(000) = 1

a111 =
⊕
x∈F3

2
f(x) = wt(f) mod 2 = 0

f = x1 ⊕ x1x2 ⊕ x2x3.
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Computing the ANF

n = 3:

0 1 2 3 4 5 6 7

f(0) f(1) f(2) f(3) f(4) f(5) f(6) f(7)
f(0) f(0)⊕ f(1) f(2) f(2)⊕ f(3) f(4) f(4)⊕ f(5) f(6) f(6)⊕ f(7)
f(0) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1) f(4) f(4)⊕ f(5) f(4)⊕ f(6) f(4)⊕ f(5)

⊕f(2)⊕ f(3) ⊕f(6)⊕ f(7)
f(0) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1) f(0)⊕ f(4) f(0)⊕ f(1) f(0)⊕ f(2) f(0)⊕ f(1)

⊕f(2)⊕ f(3) f(4)⊕ f(5) ⊕f(4)⊕ f(6) ⊕f(2)⊕ f(3)
⊕f(4)⊕ f(5)
⊕f(6)⊕ f(7)

�rst step:

f(2i+ 1)← f(2i+ 1)⊕ f(2i)

second step:

f(4i+ j + 2)← f(4i+ j + 2)⊕ f(4i+ j), ∀0 ≤ j < 2

third step:

f(8i+ j + 4)← f(8i+ j + 4)⊕ f(8i+ j), ∀0 ≤ j < 4

8



Computing the ANF

When the value vector is stored as a 32-bit integer x:

x ^= (x & 0x55555555) << 1;

x ^= (x & 0x33333333) << 2;

x ^= (x & 0x0f0f0f0f) << 4;

x ^= (x & 0x00ff00ff) << 8;

x ^= x << 16;
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Degree of a Boolean function

De�nition.

The degree of a Boolean function is the degree of the largest mono-

mial in its ANF.

Proposition.

The weight of an n-variable function f is odd if and only if deg f = n.

De�nition.

The degree of a vectorial function S with n inputs and m outputs is

the maximal degree of its coordinates.
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Example

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1

S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0

S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1

S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0

S1 = 1 + x1 + x3 + x2x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4

S2 = 1 + x1x2 + x1x3 + x1x2x3 + x4 + x1x4 + x1x2x4 + x1x3x4

S3 = 1 + x2 + x1x2 + x2x3 + x4 + x2x4 + x1x2x4 + x3x4 + x1x3x4

S4 = 1 + x3 + x1x3 + x4 + x2x4 + x3x4 + x1x3x4 + x2x3x4
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Identifying Fn2 with a �nite �eld

Fn2 is identi�ed with the �nite �eld with 2n elements.

F2n = {0} ∪ {αi, 0 ≤ i ≤ 2n − 2}
where α is a root of a primitive polynomial of degree n.

⇒ for any i, αi =

n−1∑
j=0

λjα
j

Example for n = 4:
primitive polynomial: 1 + x+ x4, α a root of this polynomial.

F24 0 1 α α2 α3 α4 α5 α6 α7

0 1 α α2 α3 α+ 1 α2 + α α3 + α2 α3 + α+ 1

F4
2 0000 0001 0010 0100 1000 0011 0110 1100 1011

α8 α9 α10 α11 α12 α13 α14

α2 + 1 α3 + α α2 + α+ 1 α3 + α2 + α α3 + α2 + α+ 1 α3 + α2 + 1 α3 + 1

0101 1010 0111 1110 1111 1101 1001
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The univariate representation of Sboxes

Any vectorial function with n inputs and n outputs can be seen as

S : F2n −→ F2n

Then,

S(X) =

2n−1∑
i=0

ciX
i , ci ∈ F2n.

Example:

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S(x) f e b c 6 d 7 8 0 3 9 a 4 2 1 5

S(X) = α12 + α2X + α13X2 + α6X3 + α10X4 + αX5 + α10X6 + α2X7

+α9X8 + α4X9 + α7X10 + α7X11 + α5X12 +X13 + α6X14

Remark. The (multivariate) degree of Xi is exactly the number of

ones in the binary expansion of i.
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Linear approximations of a function

and Walsh transform
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Idea

Algebraic attacks (and variants):

use relations between the input and output bits of the cipher which

hold with probability 1.

but the degree is usually too high!

Linear (or correlation) attacks [Siegenthaler 85][Matsui 93]:

use linear relations between the input and output bits of the cipher

which hold with probability less than 1.
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Example

Compute

f(x1, x2, x3, x4) = 1⊕ x1 ⊕ x4 ⊕ S2(x)

x 0 1 2 3 4 5 6 7 8 9 a b c d e f

S1(x) 1 0 1 0 0 1 1 0 0 1 1 0 0 0 1 1 0xc665

S2(x) 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 0 0x2a57

S3(x) 1 1 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0x907b

S4(x) 1 1 1 1 0 1 0 1 0 0 1 1 0 0 0 0 0x0caf

1⊕ x1 ⊕ x4 = 0xffff + 0xaaaa + 0xff00 = 0xaa55

S2(x) = 0x2a57

f(x) = 0x8002

The relation f(x) = 0 holds for 14 of the 16 values of x ∈ F4
2,

i.e., with probability 14
16 = 7

8.
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Computing the probabilities of all linear relations

Bias of a Boolean function

For any Boolean function f of n variables

E(f) =
∑
x∈Fn2

(−1)f(x) = 2n − 2wt(f).

Equivalently,

Pr[f(x) = 1] =
wt(f)

2n
=

1

2

(
1−
E(f)

2n

)
.

→ we need to compute the biases of all Boolean functions

x 7−→ b · S(x)⊕ a · x .
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Linear approximations of an Sbox

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f

1 -4 . 4 . -4 8 -4 4 8 4 . -4 . 4 .

2 4 -4 . -4 . . 4 4 8 . 4 8 -4 -4 .

3 8 4 4 -4 4 . . . . 4 -4 -4 -4 . 8

4 . -4 4 4 -4 . . -8 . 4 4 4 4 . 8

5 -4 4 . 4 8 . 4 -4 8 . -4 . 4 -4 .

6 -4 . 4 . 4 8 4 4 -8 4 . 4 . -4 .

7 . . . 8 . -8 . . . . 8 . 8 . .

8 . -4 4 -8 . 4 4 -8 . -4 -4 . . 4 -4

9 -4 -12 . . 4 -4 . 4 . . -4 -4 . . 4

a -4 . -12 -4 . 4 . -4 . 4 . . -4 . 4

b . . . 4 -4 4 -4 . . -8 -8 4 -4 -4 4

c . . . -4 -4 -4 -4 . . 8 -8 4 4 -4 -4

d -4 . 4 4 . -4 . -4 . 4 . . -12 . -4

e 4 -4 . . 4 4 -8 -4 . . 4 -4 . -8 -4

f -8 4 4 -8 . -4 -4 . . -4 4 . . -4 4

Pr
x

[a · x · b · S(x) = 1] =
1

2

(
1−
E[a, b]

2n

)
For instance, for a = 0x9 and b = 0x2, we have p = 1

2(1 + 12
16) = 7

8.
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Walsh transform of a Boolean function

Walsh transform of a Boolean function f of n variables

Fn2 −→ Z
a 7−→ E(f + ϕa) =

∑
x∈Fn2

(−1)f(x)+a·x

where ϕa : x 7−→ a · x

Walsh transform of a vectorial function S:

Fn2 × Fn2 −→ Z
(a, b) 7−→ E(b · S + ϕa) =

∑
x∈Fn2

(−1)b·S(x)+a·x
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Computing the Walsh transform

f(x) 0 1 0 0 0 1 1 1

(−1)f(x) 1 -1 1 1 1 -1 -1 -1

step 1 0 2 2 0 0 2 -2 0

step 2 2 2 -2 2 -2 2 2 2

E(f + ϕa) 0 4 0 4 4 0 -4 0

�rst step: S(2i) ← S(2i) + S(2i+ 1)

S(2i+ 1) ← S(2i) − S(2i+ 1)

second step: S(4i+ j) ← S(4i+ j) + S(4i+ j + 2), ∀0 ≤ j < 2

S(4i+ j + 2) ← S(4i+ j) − S(4i+ j + 2), ∀0 ≤ j < 2

third step: S(8i+ j) ← S(8i+ j) + S(8i+ j + 4), ∀0 ≤ j < 4

S(8i+ j + 4) ← S(8i+ j) − S(8i+ j + 4), ∀0 ≤ j < 4

Complexity : n2n operations.
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Some basic properties of the Walsh transform

Lemma:

E(ϕa) =
∑
x∈Fn2

(−1)a·x =
{ 2n if a = 0

0 otherwise
.

Proposition. The Walsh transform is an involution (up to

a multiplicative constant): for any x ∈ Fn2 ,∑
a∈Fn2

E(f + ϕa)(−1)a·x =
∑
u∈Fn2

∑
a∈Fn2

(−1)f(u)+a·u+a·x

=
∑
u∈Fn2

(−1)f(u)
∑
a∈Fn2

(−1)a·(x+u)

= 2n(−1)f(x)
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Some basic properties of the Walsh transform

Parseval equality. ∑
a∈Fn2

E2(f + ϕa) = 22n.

Proof.∑
a∈Fn2

E2(f + ϕa) =
∑
a∈Fn2

 ∑
x∈Fn2

(−1)f(x)+a·x


 ∑
y∈Fn2

(−1)f(y)+a·y


=

∑
x∈Fn2

∑
y∈Fn2

(−1)f(x)+f(y) ∑
a∈Fn2

(−1)a·(x+y)

= 2n
∑
x∈Fn2

(−1)f(x)+f(x)

= 22n .

[Check it on each column of the table on Slide 18]
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Linearity of a Boolean function

De�nition. For any Boolean function f of n variables,

L(f) = max
a
|E(f + ϕa)|

is called the linearity of f (highest bias for an a�ne approximation).

NL(f) = 2n−1 −
1

2
L(f)

is called the nonlinearity of f (distance of f to the a�ne functions).
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Can we say something about L(f)?

L(f) = max
a
|E(f + ϕa)|

Theorem. [Rothaus 76] For any Boolean function of n variables,

L(f) ≥ 2
n
2 ,

with equality for even n only. The functions achieving this bound

are called bent functions. They are not balanced.

Proof. From Parseval equality:

22n =
∑
a∈Fn2

E2(f + ϕa) ≤ max
a∈Fn2

E2(f + ϕa)× 2n = 2nL2(f)

with equality if and only if all E2(f + ϕa) are equal.

Then, L(f) ≥ 2
n
2 with equality if and only if

E(f + ϕa) = ±2
n
2 , ∀a ∈ Fn2 .

In particular, none of the f + ϕa is balanced.
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Can we say something about L(f)?

What is the lowest possible value for L(f) when n is odd?

When f is balanced?

Functions of degree 2.

For n odd, n = 2t+ 1

x1x2 ⊕ x3x4 ⊕ . . .⊕ x2t−1x2t ⊕ x2t+1

satis�es L(f) = 2
n+1

2 . Moreover, f is balanced and

∀a ∈ Fn2 , E(f + ϕa) ∈ {0,±2
n+1

2 }.

Theorem.

2
n
2 ≤ min

f∈Booln
L(f) ≤ 2

n+1
2
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Boolean functions with a low linearity

n minf∈Booln L(f)

5 8 [Berlekamp-Welch 72]

7 16 [Mykkelveit 80]

9 24, 26, 28, 30 [Kavut-Maitra-Yücel 06]

11 46-60

13 92-120

15 182-216 [Paterson-Wiedemann 83]

Open problem. Find the lowest possible linearity for a Boolean

function of n variables, where n is odd and n ≥ 9.
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Balanced Boolean functions with a low linearity

n minf∈Ba`n L(f)

4 8

5 8

6 12

7 16

8 20, 24

9 24, 28, 32

10 36, 40

Open problem. Find the lowest possible linearity for a balanced

Boolean function of n variables, when n ≥ 8.

Proposition. [Katz 71] If f is balanced, all values E(f + ϕa) are

divisible by 2
d n−1
deg f e+1

, i.e., at least by 4 (and by 8 if deg f < n− 1).
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Linearity of an Sbox

Criterion on the Sbox.

All linear approximations of S should have a small bias, i.e.,

L(S) = max
a∈Fn2 , b∈Fn2 ,b 6=0

|E (b · S + ϕa)| = max
b 6=0
L(b · S)

must be as small as possible.

NL(S) = 2n−1 −
1

2
L(S)

is called the nonlinearity of S.
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Sboxes with a low linearity

What is the lowest possible value for L(S) when S is a vectorial

function with n inputs and n outputs?

Theorem. [Chabaud-Vaudenay94] For any function S with n inputs

and n ouputs,

L(S) ≥ 2
n+1

2 ,

with equality for odd n only. The functions achieving this bound are

called almost bent functions.

For n even.

There exist Sboxes with

L(S) = 2
n+2

2

but we do not known if this value is minimal.
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Resistance to di�erential attacks
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Di�erence table of an Sbox

a \ b 1 2 3 4 5 6 7 8 9 a b c d e f

1 2 0 4 2 0 2 2 0 0 0 2 0 0 0 2

2 2 2 0 2 4 0 2 0 4 0 0 0 0 0 0

3 2 0 4 0 2 0 0 0 0 6 0 0 0 2 0

4 2 0 2 4 0 0 0 2 2 0 0 2 0 0 2

5 0 4 2 0 0 0 2 2 0 0 4 2 0 0 0

6 4 0 0 0 0 4 0 4 0 0 0 0 4 0 0

7 0 2 0 0 2 2 2 0 2 2 2 0 0 2 0

8 0 4 0 0 0 4 0 0 0 0 0 0 4 0 4

9 2 2 0 2 2 0 0 0 4 0 0 2 0 2 0

a 0 0 2 2 0 2 2 2 0 2 2 0 0 0 2

b 0 0 2 0 4 0 2 2 0 0 0 6 0 0 0

c 0 2 0 0 0 2 0 0 2 2 2 2 0 4 0

d 2 0 0 0 2 0 0 0 0 2 0 0 8 2 0

e 0 0 0 0 0 0 4 0 0 0 4 0 0 4 4

f 0 0 0 4 0 0 0 4 2 2 0 2 0 0 2

δS(a, b) = #{X ∈ Fn2 , S(X ⊕ a)⊕ S(X) = b}
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Resistance to di�erential attacks

Criterion on the Sbox.[Nyberg-Knudsen 92] All entries in the di�er-

ence table of S should be small.

δ(S) = max
a,b 6=0

#{X ∈ Fn2 , S(X ⊕ a)⊕ S(X) = b}

must be as small as possible.

δ(S) is called the di�erential uniformity of S (always even).

Theorem. For any Sbox S with n inputs and n outputs,

δ(S) ≥ 2 .

The functions achieving this bound are called almost perfect nonlinear

functions (APN).
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Finding good Sboxes
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A�ne equivalence between Sboxes

S1 and S2 are a�nely equivalent if there exist two a�ne permutations

A1 and A2, such that

S2 = A2 ◦ S1 ◦A1

Then,

δ(S2) = δ(S1) and L(S2) = L(S1)
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Permutations of F4
2

δ(S) ≥ 4 and L(S) ≥ 8

16 classes of optimal Sboxes [Leander-Poschmann 07]

8 of them have all x 7→ b · S(x) of degree 3.

0 1 2 3 4 5 6 7 8 9 a b c d e f

G0 0 1 2 13 4 7 15 6 8 11 12 9 3 14 10 5

G1 0 1 2 13 4 7 15 6 8 11 14 3 5 9 10 12

G2 0 1 2 13 4 7 15 6 8 11 14 3 10 12 5 9

G3 0 1 2 13 4 7 15 6 8 12 5 3 10 14 11 9

G4 0 1 2 13 4 7 15 6 8 12 9 11 10 14 5 3

G5 0 1 2 13 4 7 15 6 8 12 11 9 10 14 3 5

G6 0 1 2 13 4 7 15 6 8 12 11 9 10 14 5 3

G7 0 1 2 13 4 7 15 6 8 12 14 11 10 9 3 5

G8 0 1 2 13 4 7 15 6 8 14 9 5 10 11 3 12

G9 0 1 2 13 4 7 15 6 8 14 11 3 5 9 10 12

G10 0 1 2 13 4 7 15 6 8 14 11 5 10 9 3 12

G11 0 1 2 13 4 7 15 6 8 14 11 10 5 9 12 3

G12 0 1 2 13 4 7 15 6 8 14 11 10 9 3 12 5

G13 0 1 2 13 4 7 15 6 8 14 12 9 5 11 10 3

G14 0 1 2 13 4 7 15 6 8 14 12 11 3 9 5 10

G15 0 1 2 13 4 7 15 6 8 14 12 11 9 3 10 5
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Permutations of Fn2 , n odd

L(S) ≥ 2
n+1

2 and δ(S) ≥ 2

• Any AB Sbox (i.e., with L(S) = 2
n+1

2 ) is APN [Chabaud-Vaudenay 94].

• The converse holds for some cases only, including quadratic APN

Sboxes [Carlet-Charpin-Zinoviev 98].

• AB Sboxes over Fn2 have degree at most n+1
2 .
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Known AB permutations of Fn2 , n odd

Monomials permutations S(x) = xs over F2n.

quadratic 2i + 1 with gcd(i, n) = 1, [Gold 68],[Nyberg 93]

1 ≤ i ≤ (n− 1)/2

Kasami 22i − 2i + 1 with gcd(i, n) = 1 [Kasami 71]

2 ≤ i ≤ (n− 1)/2

Welch 2
n−1

2 + 3 [Dobbertin 98]

[C.-Charpin-Dobbertin 00]

Niho 2
n−1

2 + 2
n−1

4 − 1 if n ≡ 1 mod 4 [Dobbertin 98]

2
n−1

2 + 2
3n−1

4 − 1 if n ≡ 3 mod 4 [Xiang-Hollmann 01]

Non-monomial permutations [Budaghyan-Carlet-Leander08]

For n odd, divisible by 3 and not by 9.

S(x) = x2i+1 + ux2j
n
3+2(3−j)n3+i

with gcd(i, n) = 1 and j = i
n

3
mod 3
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Known APN permutations of Fn2 , n even

For n = 6.

δ(S) ≥ 2 and L(S) ≥ 12

S= {0, 54, 48, 13, 15, 18, 53, 35, 25, 63, 45, 52, 3, 20, 41, 33, 59,

36, 2, 34, 10, 8, 57, 37, 60, 19, 42, 14, 50, 26, 58, 24, 39, 27, 21,

17, 16, 29, 1, 62, 47, 40, 51, 56, 7, 43, 44, 38, 31, 11, 4, 28, 61,

46, 5, 49, 9, 6, 23, 32, 30, 12, 55, 22};

satis�es

δ(S) = 2 , degS = 4 and L(S) = 16 [Dillon 09]

The corresponding univariate polynomial over F26 contains 52 nonzero

monomials (out of the 56 possible monomials of degree at most 4).

This is the only known APN permutation with an even number of

variables.
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Good permutations of Fn2, n even

Usually, we search for permutations S with

δ(S) = 4 and L(S) = 2
n+2

2 .

Monomials permutations S(x) = xs over F2n.

2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Gold 68]

22i − 2i + 1, gcd(i, n) = 2 n ≡ 2 mod 4 [Kasami 71]

2
n
2 + 2

n
4 + 1 n ≡ 4 mod 8 [Bracken-Leander 10]

2n − 2 [Lachaud-Wolfmann 90]

The last one is a�nely equivalent to the AES Sbox.
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Some conclusions

• Many other properties of Sboxes can be exploited by an attacker;

• A strong algebraic structure may introduce weaknesses.

• Don't forget implementation!!!

Some useful links:

• Boolean functions (and related entries), in Encyclopedia of Cryp-

tography and Security, Springer, 2011.

• Handbook of Finite Fields (G. Mullen and D. Panario, eds.), CRC

Press, 2013.
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