
Hash Functions
Bart Preneel

June 2013

Insert presenter logo
here on slide master

Title of Presentation

Bart Preneel
KU Leuven - COSIC

firstname.lastname@esat.kuleuven.be

Ice Break 2013

June 2013

Hash function design and
cryptanalysis: basic topics

2

Hash functions

X.509 Annex D
MDC-2
MD2, MD4, MD5
SHA-1

This is an input to a crypto-
graphic hash function. The input
is a very long string, that is
reduced by the hash function to a
string of fixed length. There are
additional security conditions: it
should be very hard to find an
input hashing to a given value (a
preimage) or to find two colliding
inputs (a collision).

1A3FD4128A198FB3CA345932h

RIPEMD-160
SHA-256
SHA-512

SHA-3

3

Applications

• short unique identifier to a string
– digital signatures
– data authentication

• one-way function of a string
– protection of passwords
– micro-payments

• confirmation of knowledge/commitment

• pseudo-random string generation/key derivation
• entropy extraction
• construction of MAC algorithms, stream ciphers, block

ciphers,…

2005: 800 uses of MD5 in Microsoft Windows
4

Agenda

• Definitions
• Iterations (modes)
• Compression functions
• Constructions
• SHA-3
• Conclusions

5

Hash function flavours

cryptographic hash function

MDCMAC

OWHF CRHF
UOWHF

(TCR)

this
talk

6

Informal definitions

• no secret parameters
• input string x of arbitrary length ⇒ output h(x) of

fixed bitlength n
• computation “easy”

• One Way Hash Function (OWHF)
– preimage resistance
– 2nd preimage resistance

• Collision Resistant Hash Function (CRHF): OWHF +
– collision resistant

Hash Functions
Bart Preneel

June 2013

7

Security requirements (n-bit result)

h

?

h(x)

h

x

h(x)

h

?

h(x’)

h

?

h

?

=

≠

=

preimage 2nd preimage collision

2n 2n 2n/2

≠

h(x’)h(x)

8

Preimage resistance

h

?

h(x)

preimage

2n

• in a password file, one does not store
– (username, password)

• but
– (username,hash(password))

• this is sufficient to verify a password
• an attacker with access to the

password file has to find a preimage

9

Second preimage resistance

h

x

h(x)

h

?

h(x’)=

2nd preimage

2n

≠

• an attacker can modify x but not h(x)
• he can only fool the recipient if he

finds a second preimage of x

h(x)

Channel 2: low capacity but secure
(= authenticated – cannot be modified)

x

Channel 1: high capacity and insecure

10

Collision resistance (1/2)

hh

x

=

≠
collision

2n/2

h(x’)h(x)

• hacker Alice prepares two versions
of a software driver for the O/S
company Bob
– x is correct code
– x’ contains a backdoor that gives Alice

access to the machine

• Alice submits x for inspection to Bob

x’

• if Bob is satisfied, he digitally signs
h(x) with his private key

• Alice now distributes x’ to users of
the O/S; these users verify the
signature with Bob’s public key

• this signature works for x and for x’,
since h(x) = h(x’)

11

Collision resistance (2/2)

hh

x

=

≠
collision

2n/2

h(x’)h(x)

• in many cryptographic protocols,
Alice wants to commit to a value x
without revealing it

• Alice picks a secret random string r
and sends y = h(x || r) to Bob

x’

• in a later phase of the protocol, Alice
reveals x and r to Bob and he
checks that y is correct

• if Alice can find a collision, that is
(x,r) and (x’,r’) with x’ ≠ x she can
cheat

• if Bob can find a preimage, he can
learn x and cheat

12

Pseudo-random function

computationally indistinguishable from a random function

Advh
prf = Pr [K ← KK: AhK(.) ⇒1] - Pr [f ← RAND(m,nRAND(m,n)):: Af ⇒1]

RAND(m,n): set of all functions from m-bit to n-bit strings

h

$ $

K

D
This concept makes only

sense for a function with a
secret key

? or ?

f

Hash Functions
Bart Preneel

June 2013

13

variant of indistinguishability appropriate when distinguisher
has access to inner component (e.g. building block of a
hash function)

∃ Simulator S, ∀ distinguisher D, AdvPRO(H,S) is small

H
(hash function)

FIL
RO VIL RO S

D

? or ?

Indifferentiability from a random oracle
or PRO property [Maurer+04]

14

Brute force (2nd) preimage

• multiple target second preimage (1 out of many):
– if one can attack 2t simultaneous targets, the effort to find a single

preimage is 2n-t

• multiple target second preimage (many out of
many):
– time-memory trade-off with Θ(2n) precomputation and

storage Θ(22n/3) time per (2nd) preimage: Θ(22n/3)
[Hellman’80]

• answer: randomize hash function with a parameter S
(salt, key, spice,…)

15

how many people r do I need to have in a room to
have a probability of p=50% to have at least 2
people with the same birthday?

intuition: number of distinct pairs of people is 23.22/2 = 253; each pair has
probability 1/365 to have the same birthday

The birthday paradox

answer: 23

what is the probability that the birthdays of r people are distinct?
r terms

q = 1 - p = 1 . 364/365 . 363/365 . 362/365 … (365-(r-1))/365
q = 1-p ≈ 0.5 for r = 23

exercise: how many people do you need in a room to have a probability
of 0.50 to have 3 people with the same birthday?

1616

The birthday paradox (2)

• given a set with S elements
• choose r elements at random (with replacements) with r « S
• the probability p that there are at least 2 equal elements (a

collision) ≅ 1 - exp (- r(r-1)/2S)
• more precisely, it can be shown that

– p ≥ 1 - exp (- r(r-1)/2S)
– if r < √2S then p ≥ 0.6 r (r-1)/2S

⇒ for a hash function with an n-bit result, a collision can be
found in time 2n/2 and memory 2n/2

• the number of collisions follows a Poisson distribution with λ
= r(r-1)/2S
– the expected number of collisions is equal to λ
– the probability to have c collision is e -λ λc / c!

17

The birthday paradox - proof

q = 1-p = 1 . ((S-1)/S) . ((S-2)/S) …. ((S-(r-1))/S)
or q = Πk=1

r-1 (S-k/S)
ln q = Σk=1

r-1 ln (1-k/S) ≅ Σk=1
r-1 -k/S = -r(r-1)/2S

hence p = 1 – q = 1 - exp (- r(r-1)/2S)

r terms

Taylor: if x « 1: ln (1-x) ≅ x

summation: Σk=1
r-1 k = r (r-1)/2

18

Functional graph of f(x) = x3 + 3 mod 11

Exercise: find the functional graph of f(x) = x3 + 7 mod 11

0

3

8

96

10

2
1

4

5

7

Hash Functions
Bart Preneel

June 2013

19

Functional graph of f(x) = x2 + 7 mod 11

• Exercise: why is the indegree of 5 nodes equal to 0 resp. 2?

9 2

7
4

1

8

510

36

0

Done!

20

Functional graph of a permutation π

expected length of
largest cycle: 0.62 2n

permutation π

π(x)x ππ(x) π2(x)

π(x)x π2(x)

every permutation of
a finite set can be
written as a product of
disjoint cycles

expected number
of cycles of length
at most m ≈ ln m

21

Functional graph of a random function f

random function f
f(x)x ff(x) f2(x)

Expected length of largest cycle:
(π/8) 2n/2

Expected length from a point to
the cycle:(π/8) 2n/2

[Odlyzko-Flajolet’89]

xf(x)

f2(x)xf(x)

f2(x)

collision
f(xi)=f(xj)

22

Brute force collision search

• low memory and parallel
implementation of the birthday attack
[Pollard’78][Quisquater’89][Wiener-van Oorschot’94]

• distinguished point (d bits)
– Θ(e2n/2 + e 2d+1) steps with e the cost of one

function evaluation
– Θ(n2n/2-d) memory

– full cost: Θ(e n2n/2)

l

c

l = c = (π/8) 2n/2

h(x)x h

a point of the form
000 … 000 || x

d

M. Wiener: The Full Cost of Cryptanalytic Attacks, J. of Cryptology, 2002

23

Collision resistance

• hard to achieve in practice
– many attacks
– requires double output length 2n/2 versus 2n

• hard to achieve in theory
– [Simon’98] one cannot derive collision resistance from “general”

preimage resistance (there exists no black box reduction)

• hard to formalize: requires
– family of functions: key, parameter, salt, spice,…
– “human ignorance” trick [Stinson’06], [Rogaway’06]

23 24

Relation between properties

[Rogaway-Shrimpton’04]

[Stinson’06]

[Reyhanitabar-Susilo-Mu’10]

[Andreeva-Stam’10]

Even if Coll ⇒ xSEC/Pre:
bound always 2n/2 << 2n

Hash Functions
Bart Preneel

June 2013

25

Brute force attacks in practice

• (2nd) preimage search
– n = 128: 23 B$ for 1 year if one can attack 240 targets in

parallel

• parallel collision search: small memory using
cycle finding algorithms (distinguished points)
– n = 128: 1 M$ for 8 hours (or 1 year on 100K PCs)
– n = 160: 90 M$ for 1 year
– need 256-bit result for long term security (30 years or more)

26

Quantum computers

• in principle exponential parallelism
• inverting a one-way function: 2n reduced to 2n/2

[Grover’96]
• collision search:

– 2n/3 computation + hardware [Brassard-Hoyer-Tapp’98]
– [Bernstein’09] classical collision search requires 2n/4 computation

and hardware (= standard cost of 2n/2)

27

Properties in practice

• collision resistance is not always necessary
• other properties are needed:

– PRF: pseudo-randomness if keyed (with secret key)
– PRO: pseudo-random oracle property (indifferentiable from a

random oracle) – but see [Ristenpart-Shacham-Shrimpton’11]
– near-collision resistance
– partial preimage resistance (most of input known)
– multiplication freeness

• how to formalize these requirements and the
relation between them?

2828

Iteration
(mode of compression function)

28

29

How not to construct a hash function

• Divide the message into t blocks xi of n bits each

Message block 1: x1

⊕
Message block 2: x2

⊕

Message block t: xt

=

⊕

Hash value h(x)

…

30

Hash function: iterated structure

• split messages into blocks of fixed length and hash them
block by block with a compression function f

• need padding at the end

efficient and elegant…. but …

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3
g

Hash Functions
Bart Preneel

June 2013

31

Security relation between f and h

• iterating f can degrade its security
– trivial example: 2nd preimage

f
x1

IV
f

x2

H1
f

x3

H2
f

x4

H3 g

f
x2

IV = H1
f

x3

H2
f

x4

H3 g

3232

Security relation between f and h (2)

• solution: Merkle-Damgård (MD) strengthening
– fix IV, use unambiguous padding and insert length at the end

• f is collision resistant ⇒ h is collision resistant
[Merkle’89-Damgård’89]

• f is ideally 2nd preimage resistant ⇔ h is ideally 2nd

preimage resistant [Lai-Massey’92]
?

• few hash functions have a strong compression function

• very few hash functions treat xi and Hi-1 in the same way

33

Security relation between f and h (3)

length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV

f

x1

IV
f

x2

H1
f

x3

H2
f

x4

H3
g

solution: output transformation

f
x1

IV
f

x2

H1

f
x3

H2 H3= h(x)

f
x1

IV
f

x2

H1

f
x3

H2
f

y

H3 H4= h(x || y)

34

More on property preservation/domain extension

• PRO preservation ⇒ Col, Sec and Pre for ideal
compression function
– but for narrow pipe bounds for Sec and Pre are at most 2n/2 rather

than 2n

many more results

3535

Attacks on MD-type iterations

• long message 2nd preimage attack
[Dean-Felten-Hu'99], [Kelsey-Schneier’05]

– Sec security degrades lineary with number 2t of message blocks
hashed: 2n-t+1 + t 2n/2+1

– appending the length does not help here!

• multi-collision attack and impact on concatenation [Joux’04]

• herding attack [Kelsey-Kohno’06]
– reduces security of commitment using a hash function from 2n

– on-line 2n-t + precomputation 2.2(n+t)/2 + storage 2t

36

How (NOT) to strengthen a hash function?
[Joux’04]

• answer: concatenation
• h1 (n1-bit result) and h2 (n2-bit result)

h2h1

g(x) = h1(x) || h2(x)

• intuition: the strength of g against
collision/(2nd) preimage attacks is the
product of the strength of h1 and h2

— if both are “independent”

• but….

Hash Functions
Bart Preneel

June 2013

37

Multiple collisions ≠ multi-collision

Assume “ideal” hash function h with n-bit result
• Θ(2n/2) evaluations of h (or steps): 1 collision

– h(x)=h(x’)

• Θ(r. 2n/2) steps: r2 collisions
– h(x1)=h(x1’) ; h(x2)=h(x2’) ; … ; h(xr2)=h(xr2’)

• Θ(22n/3) steps: a 3-collision
– h(x)= h(x’)=h(x’’)

• Θ(2n(t-1)/t) steps: a t-fold collision (multi-collision)
– h(x1)= h(x2)= … =h(xt)

38

Multi-collisions on iterated hash function (2)

• now h(x1||x2||x3||x4) = h(x’1||x2||x3||x4) = h(x’1||x’2||x3||x4) = …
= h(x’1||x’2||x’3||x’4) a 16-fold collision (time: 4 collisions)

f

x1, x’1

IV H1
f

x2, x’2

H2
f

x4, x’4x3, x’3

H3
f

• for IV: collision for block 1: x1, x’1

• for H1: collision for block 2: x2, x’2
• for H2: collision for block 3: x3, x’3
• for H3: collision for block 4: x4, x’4

3939

Multi-collisions [Joux ’04]

• finding multi-collisions for an iterated hash function is not
much harder than finding a single collision (if the size of the
internal memory is n bits)

h2h1

g(x) = h1(x) || h2(x)

R• algorithm
• generate R = 2n1/2-fold

multi-collision for h2
• in R: search by brute

force for h1

• Time: n1. 2n2/2 + 2n1/2

<< 2(n1 + n2)/2

40

Multi-collisions [Joux ’04]

consider h1 (n1-bit result) and h2 (n2-bit result), with n1 ≥ n2.
concatenation of 2 iterated hash functions (g(x)= h1(x) || h2(x))

is as most as strong as the strongest of the two (even if both
are independent)

• cost of collision attack against g at most
n1 . 2n2/2 + 2n1/2 << 2(n1 + n2)/2

• cost of (2nd) preimage attack against g at most
n1 . 2n2/2 + 2n1 + 2n2 << 2n1 + n2

• if either of the functions is weak, the attacks may work better

41

Summary

42

Improving MD iteration

salt + output transformation + counter + wide pipe

f

x1

IV
f

x2

H1

f

x3

H2

f

x4

H3 g

1

salt salt salt salt salt

|x|

security reductions well understood
many more results on property preservation
impact of theory limited

2 3 4

2n2n 2n 2n 2n n

Hash Functions
Bart Preneel

June 2013

43

Improving MD iteration

• degradation with use: salting (family of functions,
randomization)
– or should a salt be part of the input?

• PRO: strong output transformation g
– also solves length extension

• long message 2nd preimage: preclude fix points
– counter f → fi [Biham-Dunkelman’07]

• multi-collisions, herding: avoid breakdown at 2n/2

with larger internal memory: known as wide pipe
– e.g., extended MD4, RIPEMD, [Lucks’05]

44

Tree structure: parallelism

[Damgård’89], [Pal-Sarkar’03]

f

x1

f

f f

x2 x3 x4 x5

f

f f

x6 x7 x8

45

Permutation (π) based: sponge

example: RadioGatun

x1

π

H10

H20

x2

π

x3

π

x4

π π π π

h1

π

h2

absorb buffer squeeze

…

generalization (“Parazoa”)
JH, Cubehash, Fuge, Grindahl, Hamsi, Luffa

46

Permutation (π) based: sponge

x1

π

H10

H20

x2

π

x3

π

x4

π π

h1

π

h2

absorb squeeze

…

if H1 has r bits (rate), H2 has c bits (capacity) and the
permutation π is “ideal”, then a sponge function has security
O(2c) against (2nd) preimage attacks and O(2c/2) against
collision attacks

r

c

47

Summary

• growing theory to reduce security properties of
hash function to that of compression function
(MD) or permutation (sponge)
– preservation of large range of properties
– relation between properties

• it is very nice to assume multiple properties of the
compression function f, but unfortunately it is very
hard to verify these

• still no single comprehensive theory

48

Agenda

• Definitions
• Iterations (modes)
• Compression functions
• Constructions
• SHA-3
• Conclusions

Hash Functions
Bart Preneel

June 2013

4949

Compression functions

49 50

Block ciphers

• E: {0,1}n x {0,1}k → {0,1}n or EK: {0,1}n → {0,1}n

• family of permutations on the domain {0,1}n

• every key selects one permutation
– block length n: there exist 2n! ≈ 2 (n-1)2n permutations
– key length k: 2k selectable permutations only

128, 192, 2561281997AES
128641991IDEA

112, 1686419783-DES
56641977DES
knyear

51

Hash functions based on block ciphers

• why
– trust
– reduce design, evaluation, and implementation effort
– compact implementation
– a nice research problem

• why not
– slow (one key schedule per encryption)
– weaknesses which are not relevant to encryption (AES-256, weak keys,

fixed points)
– block-oriented output: structural problems
– export restrictions

• rate = # blocks hashed per encryption

52

Single block length: [Rabin’78]

• Merkle’s meet in the middle: (2nd) preimage in time 2n/2

– Select 2n/2 values for (x1,x2) and compute forward H’2
– Select 2n/2 values for (x3,x4) and compute backward H’’2
– By the birthday paradox expect a match and thus a (2nd) preimage

• extensions
– [Quisquater+89] low memory version (distinguished points)

H1E

x1

H2E

x2

H3E

x3

H4E

x4

IV

53

Single block length: [Rabin’78]

• consider a meet in the middle attack where it takes 1 step
to compute forward and 2s step to compute backwards

• how long does it take to find a 2nd preimage?

• answer 21+(n+s)/2 steps [Lai-Massey’92]

H1E

x1

H2E

x2

H3E

x3

H4E

x4

IV

54

Block cipher (EK) based: single block length

Davies-Meyer

xi

EHi-1

Hi

Miyaguchi-Preneel

xi E

Hi-1

Hi

• output length = block length m; rate 1; 1 key schedule per encryption
• 12 secure compression functions (in ideal cipher model)

• lower bounds: collision 2m/2, (2nd) preimage 2m

• [Preneel+’93], [Black-Rogaway-Shrimpton’02], [Duo-Li’06], [Stam’09],…

Hash Functions
Bart Preneel

June 2013

5555

Permutation (π) based

small permutation

JH
xi

π
H1i-1 H1i

H2iH2i-1
Hi

Grøstl

xi

π2
Hi-1

π1

parazoa

56

Single Block Length (3)

• Secure schemes have proof in the ideal cipher model [Winternitz’82]
and [Black-Rogaway-Shrimpton’02]

• Ideal cipher?
• Define BBk,n the set of all block ciphers with k-bit keys and n-bit block

2n!
The cardinality of this set is |BBk,n| =

2k

• And ideal (block) cipher is a block cipher selected according to the
uniform distribution from the set BBk,n

• These proofs protect against generic attacks. But small deviations
from being ideal can result in devastating attacks on the hash function

– DES: weak and semi-weak keys
– SHACAL-1 (based on SHA-1): best known attack on SHACAL 2500 but collisions for

SHA-1 in 269

– AES-128 has special structure up to 7 out of 10 rounds [Rijmen-Knudsen’07]; even
worse for AES-192 and AES-256 (related key attacks!)

57

Iteration modes and compression functions

• security of simple modes well understood
• powerful tools available

• analysis of slightly more complex schemes very
difficult

• which properties are meaningful?
• which properties are preserved?
• MD versus sponge is still open debate

58

Exercise: analyze the security

• Block cipher E with block length and key length equal to n = 128 bits
• Compression function Hi = f(H i-1, xi)
• Hash function h: starts with fixed IV, Merkle-Damgaard iteration; pad

at the end with zeroes; fill the last block with the 88-bit string
1000…000 followed by the message length in a field of 40 bits

• C is the 128-bit constant 0xAAAAAA…A
• H0 is the 128-bit constant 0x000000..0

Hi

E
xi ⊕Hi-1

c ⊕ xi ⊕Hi-1
1. Is the compression function f preimage resistant?
2. Is the compression function f 2nd preimage resistant?
3. Is the compression function f collision resistant?
4. Is the hash function h preimage resistant?
5. Is the hash function h 2nd preimage resistant?
6. Is the hash function h collision resistant?

5959

Hash function
constructions

59 6060

Hash function history 101

1980

1990

2000

2010

H
AR

D
W

AR
E

S
O

FT
W

AR
E

DES

AES

single
block
length

double
block
length

permu-
tations

RSA

ad hoc
schemes

security
reduction
for
factoring,
DLOG,
lattices

MD2
MD4
MD5

SHA-1

RIPEMD-160

SHA-2

Whirlpool

SHA-3

SNEFRU

Dedicated

Hash Functions
Bart Preneel

June 2013

61

Hash function constructions

block cipher based
– well studied but need very strong assumption on block cipher
– due to key schedule for every encryption at least 3-4 times slower than

AES
– 30 proposals, more than half broken
– progress in proofs steady but slowly

based on algebraic constructions with security
reduction
– factoring, discrete log, ECC: very slow
– additive: lattices/knapsacks
– multiplicative: matrices

dedicated hash functions
– >40 designs until 2008
– about 30 broken: X.509 Annex D, FFT-hash I,II, N-hash, Snefru, MD2, … 62

MDx-type hash function history

MD5

SHA(-0)

SHA-1

SHA-2

SHA-3

HAVAL

Ext. MD4

RIPEMD

RIPEMD-160

MD4 90

91

92

93

94
95

02

12

63

MD5 [Rivest’91]: 4 rounds of 16 steps

A0 B0 C0 D0

A1 B1 C1 D1

A16 B16 C16 D16

x0

x15

A17 B17 C17 D17

A32 B32 C32 D32xp(15)

xp(0)

A33 B33 C33 D33

A48 B48 C48 D48xq(15)

xq(0)

A49 B49 C49 D49

A64 B64 C64 D64xr(15)

xr(0)

…

…

…

…
f

f

g

g

h

h

j

j

+

H i-1

H i

xi
K
i

64

State updates in the MD4 family

SHA/SHA-1 SHA-256 MD4

Design principles copied in MD5, RIPEMD, HAVAL, SHA,
SHA-1, SHA-256, ...
– All hash functions in use today

Slide credit: C. Rechberger

65

The complexity of collision attacks

0
10
20
30
40
50
60
70
80
90

19
92

19
92

19
94

19
96

19
98

20
00

20
02

20
04

20
06

20
08

20
10

MD4
MD5
SHA-0
SHA-1
Brute force

brute force: 1 million PCs (1 year) or US$ 100,000 hardware (4 days)

6666

[Wang+’04]

[Wang+’05]
[Mendel+’08]

[McDonald+’09]

[Manuel+’09]

Most attacks
unpublished/withdrawn

[Sugita+’06]

log2 complexity

[Stevens’12]

SHA-1 designed by NIST (NSA) in ‘94

prediction: collision for SHA-1 in the next 12 months

Hash Functions
Bart Preneel

June 2013

6767

Rogue CA attack
[Sotirov-Stevens-Appelbaum-Lenstra-Molnar-Osvik-de Weger ’08]

Self-signed
root key

CA1 CA2 Rogue CA

User1 User2 User x

• request user cert; by special
collision this results in a fake CA
cert (need to predict serial
number + validity period)

•6 CAs have issued certificates signed with MD5 in 2008:
— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter

AG, RSA Data Security, Verisign.co.jp

•6 CAs have issued certificates signed with MD5 in 2008:
— Rapid SSL, Free SSL (free trial certificates offered by RapidSSL), TC TrustCenter

AG, RSA Data Security, Verisign.co.jp

impact: rogue CA that
can issue certs that
are trusted by all
browsers

impact: rogue CA that
can issue certs that
are trusted by all
browsers

6868

Upgrades

• RIPEMD-160 is good replacement for SHA-1

• upgrading algorithms is always hard

• TLS uses MD5 || SHA-1 to protect algorithm
negotiation (up to v1.1)

• upgrading negotiation algorithm is even
harder: need to upgrade TLS 1.1 to TLS 1.2

6969

SHA-2 [NIST‘02]

• SHA-224, SHA-256, SHA-384, SHA-512
– non-linear message expansion
– 64/80 steps
– SHA-384 and SHA-512: 64-bit architectures

• SHA-256 collisions: 31/64 steps 265.5 [Mendel+’13]
– free start collision: 52/64 steps (212x) [Li+12]
– non-randomness 47/64 steps (practical) [Biryukov+11][Mendel+11]

• SHA-256 preimages: 45/64 steps (225x) [Khovratovich+’12]

• implementations today faster than anticipated

• adoption
– industry slow in migrating; may be now implementing SHA-3
– very slow for TLS/IPsec (no pressing need)

70

Agenda

• Definitions
• Iterations (modes)
• Compression functions
• Constructions
• SHA-3
• Conclusions

7171

SHA-3
(bits and bytes)

71 72

NIST AHS competition (SHA-3)

• SHA-3: 224, 256, 384, and 512-bit message digests
• (similar to SHA-2)

64
51

14
5 1

0
20
40
60
80

Q4/08 Q3/09 Q4/10

round 1 round 2 final

Call: 02/11/07

Deadline (64): 31/10/08

Round 1 (51): 09/12/08

Round 2 (14): 24/7/09

Final (5): 10/12/10

Selection: 02/10/12

Q4/12

Hash Functions
Bart Preneel

June 2013

73

The candidates

Slide credit: Christophe De Cannière
74

Preliminary cryptanalysis

Slide credit: Christophe De Cannière

75

End of Round 1 candidates

a

Slide credit: Christophe De Cannière
76

Round 2 candidates

a

Slide credit: Christophe De Cannière

7777

Properties: bits and bytes
[Watanabe’10]

78

Software performance
eBash [Bernstein-Lange11]

logarithmic scale

slower

factor 4 in cycles/byte

Hash Functions
Bart Preneel

June 2013

7979

Hardware: post-place & route results for
ASIC 130nm [Guo-Huang-Nazhandali-Schaumont’10]

Area
(GateEqv)

Throughput
(Gbps)

Slide credit: Patrick Schaumont, Virginia Tech

Keccak

Grøstl

JH

Skein

Blake

80

Keccak

permutation: 25, 50, 100, 200, 400, 800, 1600

nominal version:
• 5x5 array of 64 bits

• 18 rounds of 5 steps

81

Keccak: FIPS

• new number (not 180-x)
• flexible output length and tree structure (Sakura) allowed

by additional encoding
• six versions

– n=256; c = 256; r = 1344 (84%)
– n=256; c = 256; r = 1344 (84%)
– n=384; c = 512; r = 1088 (68%)
– n=512; c = 512; r = 1088 (68%)
– n=x; c = 256; r = 1344 (84%)
– n=x; c = 512; r = 1088 (68%)

If H1 has r bits (rate), H2 has c bits (capacity) and the permutation π is
“ideal”, then a sponge function has security O(2c) against (2nd)
preimage attacks and O(2c/2) against collision attacks

82

Performance of hash functions - Bernstein
(cycles/byte) Intel Core 2 Quad Q9550; 4 x 2833MHz (2008)

(estimated)

2001

83

Hash functions: conclusions

• SHA-1 would have needed 128-160 steps
instead of 80

• 2004-2009 attacks: cryptographic meltdown but
not dramatic for most applications
– clear warning: upgrade asap

• theory is developing for more robust iteration
modes and extra features; still early for building
blocks

• Nirwana: efficient hash functions with security
reduction

