
MAC Algorithms
Bart Preneel

June 2013

MAC Algorithm Design and
Cryptanalysis: Basics

MAC Algorithm Design and
Cryptanalysis: Basics

Bart Preneel

KU Leuven - COSIC, Belgium

firstname.lastname(AT)esat.kuleuven.be

Ice Break 2013

June 2013

Bart Preneel

KU Leuven - COSIC, Belgium

firstname.lastname(AT)esat.kuleuven.be

Ice Break 2013

June 2013

MAC algorithms

Clear
text MAC

VER
IFY

Clear
text

Clear
text

Clear
text

2

MAC = hash function with secret key

MAC

Where dips the rocky
highland of Sleuth Wood

in the lake, There lies
a leafy island where

flapping herons wake
the drowsy water-rats;

there we’ve hid our
faery vats, full of berries

and of reddest stolen
cherries. Come away, o

human child! To the

K

239215682364

MAC

Where dips the rocky
highland of Sleuth Wood

in the lake, There lies
a leafy island where

flapping herons wake
the drowsy water-rats;

there we’ve hid our
faery vats, full of berries

and of reddest stolen
cherries. Come away, o

human child! To the

K

239215682364

239215682364 = ?

MAC: Definition

Message Authentication Code

= hash function with secret key:

1. Description of h public

2. X arbitrary length ⇒ fixed length m (32 . . . 160 bits)

3. Computation of hK(X) “easy” given X and K

4. Computation of hK(X) “hard” given only X, even if a large number of
pairs {Xi, hK(Xi)} is known

• Calculation of hK(X) without knowledge of secret key: forgery
(verifiable or not verifiable)

MAC: generic attacks

1. Guess MAC: ± same as for hash function
— On-line verification only

— Not verifiable

— Success probability max (1/2m, 1/2k)

2. Exhaustive key search: ± same as for block cipher
— # X, hK(X) pairs ≈ k/m

— # attempts ≈ 2k−1

3. Birthday paradox on iterated MAC algorithms
Internal memory n bits; result m bits

(output transformation g)

Forgery after 2n/2 known and ≤ 2n−m chosen texts

6

Iterated MAC algorithms
length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV

f
x1

IV
f

x2

H1

f
x3

H2 H3= h(x)

f

y

H3
f

x1

IV
f

x2

H1

f
x3

H2 H4= h(x || y)

f

y

H’3
f

x’1

IV
f

x’2

H’1

f
x’3

H’2 H’4= h(x’ || y)

f
x’1

IV
f

x’2

H’1

f
x’3

H’2 H’3= h(x’)
= colliding

MACs

=

MAC Algorithms
Bart Preneel

June 2013

Collision attack on iterated MAC algorithms

• Collision in MAC values leads to trivial forgery after 1 chosen text-
MAC pair

— indeed: h(x) = h(x’) ⇒ h(x || y) = h(x’ ||y)

• If an opponent queries h(x||y), he can forge h(x’ || y)

• MAC value of m bits: need 2m/2 known text-MAC pairs to find a
MAC collision

8

It. MAC algorithms with output transformation

• If H3 ≠ H’3 the attack will likely fail: h(x || y) ≠ h(x’ || y)

• Conclusion: attack requires that H3 = H’3 (internal collision)

f

x1

IV
f

x2

H1
f

x3

H2
g

H3 H4

f

x’1

IV
f

x’2

H1
f

x’3

H’2
g

H’3 H’4

=≠?

• If g is a injective (fewer input bit than output bits):

— h(x) = H4 = H’4 = h(x’) but it may be that H3 ≠ H’3

Collision attack on iterated MAC algorithms

• Solution: simulate the first attack

• For all MAC collisions (h(x) =h(x’)) also ask for h(x || y) and h(x’ ||y)

• If h(x || y) = h(x’ ||y), we have likely found an internal collision (a
collision for H3 in our example)

• Attack complexity: 2n/2 known text-MAC pairs and 2m-n chosen
text-MAC pairs

MAC based on a block cipher: CBC-MAC

• Standards (ANSI, ISO, IEC)

• Proof of security by [Bellare-Kilian-Rogaway]

• m = 32 . . . 64 bits

• Special operation for last block is essential: EMAC, LMAC or CMAC (cf.
infra)

x2

EK1

x1

EK1

xt

EK1

MACK1
(x)

G
H1 H2 Ht-1…

Based on a block cipher: CBC-MAC (2)

Security with DES:

• Key search: 256 encryptions

• Key recovery using lc: 243 known texts

• Guess MAC: max(1/256, 1/2m)

• Birthday forgery attack (even if triple-DES):
— m = 64: 232 known and 1 chosen text

— m = 32: 233 chosen texts

• Improved attack for m = 32: 217 chosen texts and 2 known texts
[Knudsen97]

Much smaller than expected!

Based on a block cipher: CBC-MAC (3)

Security with AES-128:

• Key search: 2128 encryptions

• Guess MAC: 1/2m

• Birthday forgery attack:
— m = 128: 264 known and 1 chosen text

— m = 64: 266 chosen texts

• Improved attack for m = 64: 233 chosen texts and 2 known texts
[Knudsen97]

Acceptable for most applications

MAC Algorithms
Bart Preneel

June 2013

Exercises: CBC-MAC forgery

• simple CBC-MAC is not secure on message spaces of variable
length
— exercise: consider a 1-block input x consisting of n bits and assume

that you know MACK(x); show that it is possible to find the MAC for a
specific 2-block input

— exercise: consider two 1-block inputs x and x’ consisting of n bits and
assume that you know MACK(x) and MACK(x’); show that it is
possible to find the MAC for a specific 2-block input

MAC based on a block cipher: EMAC

x2

EK1

x1

EK1

xt

EK1

H1 H2 Ht-1…

EK2

MACK(x)

Better way to process last block: encrypted MAC (EMAC)
[RIPE’93][Petrank-Rackoff’98]

MAC based on a block cipher: LMAC

x2

EK1

x1

EK1

xt

EK2

H1 H2 Ht-1…

MACK(x)

An even better way to process last block: LMAC
[Handschuh-Preneel’06]

NIST: CMAC

• Description: use simple CBC-MAC but
— Derive two keys from K1: K2 = E K1(0) and K’2 is derived from K2 with a

simple finite field operation
— XOR K2 or K’2 to the last plaintext block (first choice if no padding, second

choice if there is padding)

• Evaluation
— This saves 1 key schedule and 1 encryption (if the length of the plaintext is

an exact multiple of the block length)
— Price to pay is robustness: K2 and K’2 can be recovered with an internal

collision attack
— Banks send the value K2 = E K1(0) as (public) key confirmation value!

• Note on name
— This was called OMAC by its designers [Iwata-Kurosawa]
— OMAC is an optimized version of TMAC which is an optimized version of

XCBC [Black-Rogaway’00]

MAC based on a block cipher: retail MAC

x2

EK1

x1

EK1

xt

EK1

G
H1 H2 Ht-1…

DK2

EK1

Ht = G’

G’’

MACK(x)

Based on a block cipher: retail MAC (2)

Security with DES and m = 64:

• Key search: 2112 encryptions

• Guess MAC: max(1/256, 1/2m)

• (first attack is based on guessing K1)

• Birthday forgery attack: 232 known and 1 chosen text

• Improved key recovery [Preneel-van Oorschot-Knudsen]
— 232.5 known texts and 3 • 256 off-line encryptions

— 1 known text + 256 MAC verifications + 257 off-line encryptions

Solution: triple-DES in first and last round?

MAC Algorithms
Bart Preneel

June 2013

MAC based on a block cipher: Mac-DES (1)

[Knudsen-Preneel’98]
x2

EK1

x1

EK1

xt

EK1

H1 H2 Ht-1…

DK’2

Ht

MACK(x)

EK2

Based on a block cipher: Mac-DES (2)

Security with DES and m = 64:

• Key search: 2112 encryptions

• Guess MAC: max(1/2112, 1/2m)

• Birthday forgery attack: 232 known and 1 chosen text

• Improved key recovery [Coppersmith-Mitchell-Knudsen2000]:
— 248 chosen texts and 259 off-line encryptions

Included in ISO/IEC 9797-1 (revision, 1999)

• Secret prefix: h(K1||x)
Prepend length to avoid that one can compute h(K1||x||y) from h(K1||x)

without knowing K1

• Secret suffix: h(x||K2)
Off-line attacks on h

• Envelope: h(K1||x||K2)
Risky: less secure than h

• Better variants:
— MDx-MAC and H-MAC:

— hK(X) = h(h(K1||x)||K2)

MAC: based on an MDC?

K1 x

x K2

K1 x K2

f2

f1

xK1

K2

HMAC

HMAC

• HMAC keys through the IV (plaintext) [Kim+’06]
— collisions for MD5 invalidate current security proof of HMAC-MD5
— new attacks on reduced version of HMAC-MD5 and HMAC-SHA-1

Rounds in f2 Rounds in f1 Data complexity
Haval-4 128 102 of 128 2254 CP
MD4 48 48 272 CP + 277 time
MD5 64 33 of 64 2126.1 CP
MD5 64 64 251 CP & 2100 time (RK)
SHA-0 80 80 2109 CP
SHA-1 80 53 of 80 298.5 CP

no problem yet for most widely used schemes

f2

f1

xK1

K2

Information-theoretic authentication

Authentication codes (AC): unconditionally secure

= independent of computational power of opponent

• Research area since mid 1970s

• Widely believed to be impractical:
— Use key only once

— Sometimes very large keys

— Security level against forgery is at most half the key size

In 1990s series of new schemes:

Polynomial evaluation, Toeplitz, bucket hashing, MMH, UMAC,. . .

GMAC: polynomial authentication code
(NIST SP 800-38D 2007 + 3GSM)

• keys K1, K2 ∈ GF(2128)

• input x: x1, x2, . . . , xt, with xi ∈ GF(2128)

g(x) = K1+ Σi=1
t xi • (K2)i

• in practice: compute K1 = AESK(n) (CTR mode)

• properties:
— lightweight and/or fast in software and hardware (support from Intel/AMD)

— not very robust w.r.t. nonce reuse, truncation, MAC verifications, due to
reuse of K2 (not in 3GSM!)

— efficient through reuse of fast arithmetic

• (Intel/AMD) PCLMULQD: 10.68 cycles/byte [Käsper-Schwabe09]

— weak keys [Saarinen11][Cid-Procter’13]

— versions over GF(p) (e.g. Poly1305-AES) seem more robust

MAC Algorithms
Bart Preneel

June 2013

UMAC RFC 4418 (2006)

• key K, k1, k2 .., k256 ∈ GF(232) (1024 bytes)

• input x: x1, x2, . . . , x256, with xi ∈ GF(232)

g(x) = prfK(h(x))

h(x) = (Σi=1
512

(x2i-1 + k2i-1) mod 232 . (x2i + k2i) mod 232)mod 264

• properties
— software performance: 1-2 cycles/byte

— forgery probability: 1/230 (provable lower bound)

— [Handschuh-Preneel08] full key recovery with 240 verification
queries (no nonce reuse needed!)

— Similar attack applies to WMAC polynomial variant

Information-theoretic authentication

• simple
• very high speeds

— UMAC/VMAC: up to 0.5-2
cycles/byte for long messages;

— poly1305-AES up to 4-5
cycles/byte

• parallelizable
• hardware support by Intel (GCM)
• use key only once!
• consecutive keys can be

generated with an additive stream
cipher
— but then the unconditional

security is lost

• speed comes at cost of large keys
(e.g. UMAC): key reuse??

• if part of keys is reused: key
recovery attacks

• not robust: nonce reuse can also
lead to key recovery

Conclusion: use polynomial
hash functions but avoid key
reuse as specified in several
standards

Authenticated encryption

• Default modes: ECB/CBC/CFB/OFB and CTR

• Needed for network security, but only fully understood by crypto
community around 2000 (too late)

• Standards have been selected recently:
—CCM: CTR + CBC-MAC [NIST SP 800-38C]

—GCM: CTR + GMAC [NIST SP 800-38D]

• Both are suboptimal

• IAPM
• XECB
• OCB

• GCM
• CCM
• (EAX)

patented

Issues:
• associated data
• parallelizable
• on-line
• provable security

MDC ↔ MAC

Authentication without secrecy

• MAC: obvious solution

• MDC: protect authenticity of hash result

Authentication with secrecy

• MAC: needs 2 INDEPENDENT keys (MAC then encrypt, encrypt
then MAC or MAC then encrypt then MAC)

• MDC: only 1 key, but important security risks: avoid this approachs

• Clear choice: authenticated encryption mode
— Many solutions: OCB, IAPM, XECB, GCM, CCM,. . .

Performance

• Modern processor
— HMAC, MDx-MAC: 13.1 cycles/byte for SHA-1 and 15.8 cycles/byte

for RIPEMD-160

— CBC-MAC: 43 cycles/byte for DES and 7-14 cycles/byte for AES

— Universal hash functions: 2-4 cycles/byte

• Better performance than encryption if one is willing to pay the price
in robustness

Practical recommendations

• CBC-MAC variant of AES (LMAC or CMAC)

• HMAC-RIPEMD-160 or HMAC-SHA-1

• Universal hash function based
— GMAC but replace K2 for every message as in 3G

— Poly1305-AES

MAC Algorithms
Bart Preneel

June 2013

Summary

• Data authentication ↔ secrecy

• Symmetric authentication ↔ digital signature
— MAC algorithms are much faster than signatures

• MAC algorithms: much more mature than hash functions
— Universal hash function/information theory based: fast but lack some

robustness

• Authenticated encryption better understood but not yet widely
deployed

• Importance of secure protocols (serial numbers,
timestamping)

