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MAC = hash function with secret key
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MAC: Definition

Message Authentication Code

= hash function with secret key:

1. Description of h public

2. X arbitrary length ⇒ fixed length m (32 . . . 160 bits)

3. Computation of hK(X) “easy” given X and K

4. Computation of hK(X) “hard” given only X, even if a large number of 
pairs {Xi, hK(Xi)} is known

• Calculation of hK(X) without knowledge of secret key: forgery
(verifiable or not verifiable)

MAC: generic attacks

1. Guess MAC: ± same as for hash function
— On-line verification only

— Not verifiable

— Success probability max (1/2m, 1/2k)

2. Exhaustive key search: ± same as for block cipher
— # X, hK(X) pairs ≈ k/m

— # attempts ≈ 2k−1

3. Birthday paradox on iterated MAC algorithms
Internal memory n bits; result m bits

(output transformation g)

Forgery after 2n/2 known and ≤ 2n−m chosen texts
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Iterated MAC algorithms
length extension: if one knows h(x), easy to compute h(x || y) without knowing x or IV
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Collision attack on iterated MAC algorithms

• Collision in MAC values leads to trivial forgery after 1 chosen text-
MAC pair

— indeed: h(x) = h(x’)  ⇒ h(x || y) = h(x’ ||y)

• If an opponent queries h(x||y), he can forge h(x’ || y) 

• MAC value of m bits: need 2m/2 known text-MAC pairs to find a 
MAC collision
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It. MAC algorithms with output transformation

• If H3 ≠ H’3 the attack will likely fail:  h(x || y) ≠ h(x’ || y)

• Conclusion: attack requires that H3 = H’3 (internal collision)
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• If g is a injective (fewer input bit than output bits): 

— h(x) = H4 = H’4 =  h(x’)  but it may be that H3 ≠ H’3

Collision attack on iterated MAC algorithms

• Solution: simulate the first attack

• For all MAC collisions (h(x) =h(x’)) also ask for h(x || y) and h(x’ ||y)

• If h(x || y) = h(x’ ||y), we have likely found an internal collision (a 
collision for H3 in our example)

• Attack complexity: 2n/2 known text-MAC pairs  and 2m-n chosen 
text-MAC pairs 

MAC based on a block cipher: CBC-MAC

• Standards (ANSI, ISO, IEC)

• Proof of security by [Bellare-Kilian-Rogaway]

• m = 32 . . . 64 bits

• Special operation for last block is essential: EMAC, LMAC or CMAC (cf. 
infra)
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Based on a block cipher: CBC-MAC (2)

Security with DES:

• Key search: 256 encryptions

• Key recovery using lc: 243 known texts

• Guess MAC: max(1/256, 1/2m)

• Birthday forgery attack (even if triple-DES):
— m = 64: 232 known and 1 chosen text

— m = 32: 233 chosen texts

• Improved attack for m = 32: 217 chosen texts and 2 known texts 
[Knudsen97]

Much smaller than expected!

Based on a block cipher: CBC-MAC (3)

Security with AES-128:

• Key search: 2128 encryptions

• Guess MAC: 1/2m

• Birthday forgery attack:
— m = 128: 264 known and 1 chosen text

— m = 64: 266 chosen texts

• Improved attack for m = 64: 233 chosen texts and 2 known texts 
[Knudsen97]

Acceptable for most applications
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Exercises: CBC-MAC forgery

• simple CBC-MAC is not secure on message spaces of variable 
length
— exercise: consider a 1-block input x consisting of n bits and assume 

that you know MACK(x); show that it is possible to find the MAC for a 
specific 2-block input

— exercise: consider two 1-block inputs x and x’ consisting of n bits and 
assume that you know MACK(x) and MACK(x’); show that it is 
possible to find the MAC for a specific 2-block input

MAC based on a block cipher: EMAC
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Better way to process last block: encrypted MAC (EMAC) 
[RIPE’93][Petrank-Rackoff’98]

MAC based on a block cipher: LMAC
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An even better way to process last block: LMAC 
[Handschuh-Preneel’06]

NIST: CMAC

• Description: use simple CBC-MAC but
— Derive two keys from K1: K2 = E K1(0) and K’2 is derived from K2 with a 

simple finite field operation
— XOR K2 or K’2  to the last plaintext block (first choice if no padding, second 

choice if there is padding)

• Evaluation
— This saves 1 key schedule and 1 encryption (if the length of the plaintext is 

an exact multiple of the block length)
— Price to pay is robustness: K2 and  K’2  can be recovered with an internal 

collision attack
— Banks send the value K2 = E K1(0) as (public) key confirmation value!

• Note on name
— This was called OMAC by its designers [Iwata-Kurosawa]
— OMAC is an optimized version of TMAC which is an optimized version of 

XCBC [Black-Rogaway’00]

MAC based on a block cipher: retail MAC
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Based on a block cipher: retail MAC (2)

Security with DES and m = 64:

• Key search: 2112 encryptions

• Guess MAC: max(1/256, 1/2m)

• (first attack is based on guessing K1)

• Birthday forgery attack: 232 known and 1 chosen text

• Improved key recovery [Preneel-van Oorschot-Knudsen]
— 232.5 known texts and 3 • 256 off-line encryptions

— 1 known text + 256 MAC verifications + 257 off-line encryptions

Solution: triple-DES in first and last round?
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MAC based on a block cipher: Mac-DES (1)

[Knudsen-Preneel’98]
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Based on a block cipher: Mac-DES (2)

Security with DES and m = 64:

• Key search: 2112 encryptions

• Guess MAC: max(1/2112, 1/2m)

• Birthday forgery attack: 232 known and 1 chosen text

• Improved key recovery [Coppersmith-Mitchell-Knudsen2000]:
— 248 chosen texts and 259 off-line encryptions

Included in ISO/IEC 9797-1 (revision, 1999)

• Secret prefix: h(K1||x)
Prepend length to avoid that one can compute h(K1||x||y) from h(K1||x)

without knowing K1

• Secret suffix: h(x||K2)
Off-line attacks on h

• Envelope: h(K1||x||K2)
Risky: less secure than h

• Better variants: 
— MDx-MAC and H-MAC: 

— hK(X) = h(h(K1||x)||K2)

MAC: based on an MDC?

K1 x

x K2

K1 x K2

f2
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HMAC

• HMAC keys through the IV (plaintext) [Kim+’06]
— collisions for MD5 invalidate current security proof of HMAC-MD5
— new attacks on reduced version of HMAC-MD5 and HMAC-SHA-1

Rounds in f2 Rounds in f1 Data complexity
Haval-4 128 102 of 128 2254 CP
MD4 48 48 272 CP + 277 time
MD5 64 33 of 64 2126.1 CP
MD5 64 64 251 CP & 2100 time (RK)
SHA-0 80 80 2109 CP
SHA-1 80 53 of 80 298.5 CP

no problem yet for most widely used schemes

f2

f1

xK1

K2

Information-theoretic authentication

Authentication codes (AC): unconditionally secure

= independent of computational power of opponent

• Research area since mid 1970s

• Widely believed to be impractical:
— Use key only once

— Sometimes very large keys

— Security level against forgery is at most half the key size

In 1990s series of new schemes:

Polynomial evaluation, Toeplitz, bucket hashing, MMH, UMAC,. . .

GMAC: polynomial authentication code 
(NIST SP 800-38D 2007 + 3GSM)

• keys K1, K2 ∈ GF(2128)

• input x: x1, x2, . . . , xt, with xi ∈ GF(2128)

g(x) = K1+ Σi=1
t xi • (K2)i

• in practice: compute K1 = AESK(n)  (CTR mode)

• properties:
— lightweight and/or fast in software and hardware (support from Intel/AMD)

— not very robust w.r.t. nonce reuse, truncation, MAC verifications, due to 
reuse of K2  (not in 3GSM!)

— efficient through reuse of fast arithmetic

• (Intel/AMD) PCLMULQD: 10.68 cycles/byte [Käsper-Schwabe09]

— weak keys [Saarinen11][Cid-Procter’13]

— versions over GF(p) (e.g. Poly1305-AES) seem more robust 
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UMAC RFC 4418 (2006)

• key K, k1, k2 .., k256 ∈ GF(232)  (1024 bytes)

• input x: x1, x2, . . . , x256, with xi ∈ GF(232)

g(x) = prfK(h(x))

h(x) = ( Σi=1
512

(x2i-1 + k2i-1) mod 232  . (x2i + k2i) mod 232 )mod 264

• properties
— software performance: 1-2 cycles/byte

— forgery probability: 1/230 (provable lower bound)

— [Handschuh-Preneel08]  full key recovery with 240 verification    
queries (no nonce reuse needed!)

— Similar attack applies to WMAC polynomial variant

Information-theoretic authentication

• simple
• very high speeds

— UMAC/VMAC: up to 0.5-2 
cycles/byte for long messages;

— poly1305-AES up to 4-5 
cycles/byte

• parallelizable
• hardware support by Intel (GCM)
• use key only once!
• consecutive keys can be 

generated with an additive stream 
cipher
— but then the unconditional 

security is lost

• speed comes at cost of large keys 
(e.g. UMAC): key reuse??

• if part of keys is reused: key 
recovery attacks

• not robust: nonce reuse can also 
lead to key recovery

Conclusion: use polynomial 
hash functions but avoid key 
reuse as specified in several 
standards

Authenticated encryption

• Default modes: ECB/CBC/CFB/OFB and CTR

• Needed for network security, but only fully understood by crypto
community around 2000 (too late)

• Standards have been selected recently:
—CCM: CTR + CBC-MAC [NIST SP 800-38C]

—GCM: CTR  + GMAC [NIST SP 800-38D]

• Both are suboptimal 

• IAPM
• XECB
• OCB

• GCM
• CCM
• (EAX)

patented

Issues:
• associated data
• parallelizable
• on-line
• provable security

MDC ↔ MAC

Authentication without secrecy

• MAC: obvious solution

• MDC: protect authenticity of hash result

Authentication with secrecy

• MAC: needs 2 INDEPENDENT keys (MAC then encrypt, encrypt 
then MAC or MAC then encrypt then MAC)

• MDC: only 1 key, but important security risks: avoid this approachs

• Clear choice: authenticated encryption mode
— Many solutions: OCB, IAPM, XECB, GCM, CCM,. . .

Performance

• Modern processor
— HMAC, MDx-MAC: 13.1 cycles/byte for SHA-1 and 15.8 cycles/byte 

for RIPEMD-160

— CBC-MAC: 43 cycles/byte for DES and 7-14 cycles/byte for AES

— Universal hash functions: 2-4 cycles/byte

• Better performance than encryption if one is willing to pay the price 
in robustness

Practical recommendations

• CBC-MAC variant of AES (LMAC or CMAC)

• HMAC-RIPEMD-160 or HMAC-SHA-1

• Universal hash function based
— GMAC but replace K2 for every message as in 3G

— Poly1305-AES
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Summary

• Data authentication ↔ secrecy

• Symmetric authentication ↔ digital signature
— MAC algorithms are much faster than signatures

• MAC algorithms: much more mature than hash functions
— Universal hash function/information theory based: fast but lack some 

robustness

• Authenticated encryption better understood but not yet widely 
deployed

• Importance of secure protocols (serial numbers, 
timestamping)


