Distribution Cryptanalysis

Kaisa Nyberg
Department of Information and Computer Science
Aalto University School of Science
kaisa.nyberg@aalto.fi

June 11, 2013
Introduction

Piling-Up Lemma

Multidimensional Linear Cryptanalysis

SSA Link

Distinguishing Distributions
Introduction
Distribution Cryptanalysis

- Baignères, Junod, and Vaudenay, Asiacrypt 2004 developed distinguishing techniques based on χ^2.

- Maximov developed computational techniques for computing distributions over ciphers round by round, see e.g. the paper by Englund and Maximov at Indocrypt 2005

- Hermelin et al. 2008, developed a technique called Multidimensional Linear Cryptanalysis to compute estimates of distributions using strong linear approximations.

- Collard and Standaert 2009 introduced an heuristic cryptanalysis technique called Statistical Saturation Attack (SSA)

- Leander Eurocrypt 2011 showed that there is a mathematical link between SSA and Multidimensional LC
Using Multiple Linear Approximations

- My first lecture presented classical linear cryptanalysis based on a single linear approximation $u \cdot x + w \cdot E_k(x)$ and we learnt how to establish a good estimate of $c_x(u \cdot x + w \cdot E_k(x))^2$ by collecting as many trails from u to w as we can.

- Already Matsui in 1994 studied the possibility of using multiple linear approximations (more than one u and w) simultaneously.

- Biryukov at al. developed statistical framework under the assumption that the linear approximations are statistically independent.

- Multidimensional linear cryptanalysis removes the assumption of independence [Hermelin et al. 2008]. The resulting statistical model leads to distribution cryptanalysis.

- We start by introducing criterion of statistical independence of binary random variables.
Piling-up Lemma
Piling-Up Lemma

Definition. Let T be a binary-valued random variable with $p = P[T = 0]$. The quantity $c = 2p - 1$ is called the correlation of T.

Theorem. Suppose we have k binary-valued random variables T_j, and let c_j be the correlation of T_j, $j = 1, 2, \ldots, k$. Then T_j, $j = 1, 2, \ldots, k$, is a set of independent random variables if and only if for all subsets J of $\{1, 2, \ldots, k\}$, correlation of the binary random variable

$$T_J = \bigoplus_{j \in J} T_j$$

is equal to

$$\prod_{j \in J} c_j$$

The "only if" part of this theorem is known to cryptographers as Piling-up lemma.
Proof of Piling-Up Lemma

Proof. We will give the proof for $k = 2$ and denote $T_1 + T_2$ by T. The general case follows by induction. By independency assumption

$$P[T = 0] = P[T_1 = 0]P[T_2 = 0] + P[T_1 = 1]P[T_2 = 1]$$
$$= P[T_1 = 0]P[T_2 = 0] + (1 - P[T_1 = 0])(1 - P[T_2 = 0])$$
$$= 2P[T_1 = 0]P[T_2 = 0] - P[T_1 = 0] - P[T_2 = 0] + 1$$

From this we get

$$2P[T = 0] - 1$$
$$= 4(P[T_1 = 0]P[T_2 = 0] - 2P[T_1 = 0] - 2P[T_2 = 0] + 1)$$
$$= (2P[T_1 = 0] - 1)(2P[T_2 = 0] - 1) = c_1 c_2.$$
Piling-Up Lemma and Independence

Example [Stinson] Let T_1, T_2 and T_3 be independent random variables with correlations $c_1 = c_2 = c_3 = 1/2$. Denote

\[
T_{12} = T_1 + T_2 \text{ with correlation } c_{12} = c_1 c_2 = \frac{1}{4},
\]
\[
T_{23} = T_2 + T_3 \text{ with correlation } c_{23} = c_2 c_3 = \frac{1}{4},
\]
\[
T_{13} = T_1 + T_3 \text{ with correlation } c_{13} = c_1 c_3 = \frac{1}{4}.
\]

Then we can prove that T_{12} and T_{23} cannot be independent. If they would be independent, then by the Piling-up lemma the bias of $T_{13} = T_{12} + T_{23}$ would be equal to $\frac{1}{4} \cdot \frac{1}{4} = \frac{1}{16}$ which is not the case.

To prove the converse of the Piling-up lemma, we introduce the Walsh-Hadamard transform, which allows us to establish a relationship between correlations and probability distributions of multidimensional binary random variables.
Walsh-Hadamard Transform

Definition Suppose $f : \{0, 1\}^n \to \mathbb{R}$ is any real-valued function of bit strings of length n. The Walsh-Hadamard transform transforms f to a function $F : \{0, 1\}^n \to \mathbb{R}$ defined as

$$F(w) = \sum_{x \in \{0, 1\}^n} f(x)(-1)^{w \cdot x}, \ w \in \{0, 1\}^n,$$

where the sum is taken over \mathbb{R}.

Similarly as the Walsh transform, the Walsh-Hadamard transform can also be inverted. It is its own inverse (involution) up to a constant multiplier:

$$f(x) = 2^{-n} \sum_{w \in \{0, 1\}^n} F(w)(-1)^{w \cdot x}, \text{ for all } x \in \{0, 1\}^n.$$
Probability Distribution and Correlation of \((T_1, T_2)\)

Suppose \(Z = (T_1, T_2)\) is a pair of binary random variables, \(a = (a_1, a_2)\) be a pair of bits and \(c_a\) be the correlation of \(a \cdot Z = a_1 T_1 + a_2 T_2\).

Lemma

\[
c_a = \sum_{(t_1, t_2)} P[Z = (t_1, t_2)](-1)^{a_1 t_1 + a_2 t_2}
\]

Proof. Denote \(t = (t_1, t_2)\) and \(a \cdot t = a_1 t_1 + a_2 t_2\). Then

\[
c_a = 2P[a \cdot Z = 0] - 1 = P[a \cdot Z = 0] - P[a \cdot Z = 1]
\]

\[
= \sum_{t, a \cdot t = 0} P[Z = t] - \sum_{t, a \cdot t = 1} P[Z = t] = \sum_{t} P[Z = t](-1)^{a \cdot t}.
\]
We saw that $c_a = F(a)$ is the Walsh-Hadamard transform of the real-valued function $f(t) = P[Z = t]$.

Using the inverse Walsh-Hadamard transform we get the following

$$P[Z = t] = \frac{1}{4} \sum_{(a_1, a_2)} c_a (-1)^{a_1 t_1 + a_2 t_2} = \frac{1}{4} \sum_a c_a (-1)^{a \cdot t}.$$
Proof of the Converse of the Piling-Up Lemma, $k = 2$

Claim. If the correlation of $T_1 + T_2$ is equal to $c_1 c_2$ then T_1 and T_2 are independent.

Proof. For $a = (a_1, a_2) \in \{0, 1\}^2$, we use c_a to denote the correlation of $a \cdot Z = a_1 T_1 + a_2 T_2$. Then

$$P[T_1 = t_1, T_2 = t_2] = \frac{1}{4} \sum_a c_a(-1)^{a_1 t_1 + a_2 t_2}$$

$$= \frac{1}{4} (c_{(0,0)} + c_{(1,0)}(-1)^{t_1} + c_{(0,1)}(-1)^{t_2} + c_{(1,1)}(-1)^{t_1 + t_2})$$

$$= \frac{1}{4} (1 + c_1(-1)^{t_1} + c_2(-1)^{t_2} + c_1 c_2(-1)^{t_1}(-1)^{t_2})$$

$$= \frac{1}{4} (c_1(-1)^{t_1} + 1)(c_2(-1)^{t_2} + 1)$$

$$= P[T_1 = t_1]P[T_2 = t_2]$$
Multidimensional Linear Cryptanalysis
Correlation and Distribution of Values of Functions

A vectorial Boolean function \(f : \mathbb{F}_2^n \to \mathbb{F}_2^m \) can be defined as follows. For \(\eta \in \mathbb{F}_2^m \) we denote

\[
p_{\eta} = 2^{-n} \# \{ x \in \mathbb{F}_2^n \mid f(x) = \eta \},
\]

and call the sequence \(p_{\eta}, \eta \in \mathbb{F}_2^m \), the distribution of \(f \).

Theorem The correlations of masked vectorial Boolean function can be computed as Walsh-Hadamard transform of the distribution of the function:

\[
c_x(a \cdot f(x)) = 2^{-n} \sum_{x \in \mathbb{F}_2^n} (-1)^{a \cdot f(x)} = \sum_{\eta \in \mathbb{F}_2^m} p_{\eta} (-1)^{a \cdot \eta}
\]

And conversely,

\[
p_{\eta} = 2^{-m} \sum_{a \in \mathbb{F}_2^m} (-1)^{a \cdot \eta} c_x(a \cdot f(x))
\]

for all \(\eta \in \mathbb{F}_2^m \).
Multidimensional Linear Cryptanalysis

Definition Let U and W be linear subspaces in \mathbb{F}_2^n. Then the set of linear approximations

$$u \cdot x + w \cdot E_k(x), \ u \in U, \ w \in W,$$

is called **multidimensional linear approximation of** E_k.

In practice, the input space is split into two parts $\mathbb{F}_2^n = \mathbb{F}_2^s \times \mathbb{F}_2^t$ and the output space is split into two parts $\mathbb{F}_2^n = \mathbb{F}_2^q \times \mathbb{F}_2^r$, and WLOG we assume that

$$U = \mathbb{F}_2^s \times \{0\} \text{ and } W = \mathbb{F}_2^q \times \{0\}.$$

Assume that we have the correlations of the linear approximations

$$c(u, w) = c_x(u \cdot x + w \cdot E_k(x)), \ u \in U, \ w \in W.$$

Then we can compute the distribution of values (x_s, y_q), where

$$x = (x_s, x_t) \in \mathbb{F}_2^s \times \mathbb{F}_2^t, \text{ and } E_k(x) = y = (y_q, y_r) \in \mathbb{F}_2^q \times \mathbb{F}_2^r.$$
Computing the Distribution

Theorem Using the notation introduced above

\[p(\xi_s, \eta_q) = 2^{-(s+q)} \sum_{u \in U, w \in W} (-1)^{u \cdot \xi + w \cdot \eta} c(u, w), \]

for all \((\xi_s, \eta_q) \in \mathbb{F}_2^s \times \mathbb{F}_2^q\).

Proof.

\[p(\xi_s, \eta_q) = \sum_{\xi_t, \eta_r} p(\xi, \eta) \]

\[= \sum_{\xi_t, \eta_r} 2^{-2n} \sum_{a, b} (-1)^{a \cdot \xi + b \cdot \eta} c(a, b) \]

\[= \sum_{\xi_t, \eta_r} 2^{-2n} \sum_{a, b} (-1)^{a_s \cdot \xi_s + a_t \cdot \xi_t + b_q \cdot \eta_q + b_r \cdot \eta_r} c(a, b) \]

\[= 2^{-(s+q)} \sum_{a_s, b_q} (-1)^{a_s \cdot \xi_s + b_q \cdot \eta_q} c((a_s, 0), (b_q, 0)), \]

from where we see the result.
Multidimensional Linear Cryptanalysis in Practice

- Find U and W such that there exists several linear approximations $u \cdot x + w \cdot E_k(x)$, $u \in U$, $w \in W$, with large correlations $c(u, w)$. Linear approximations with significant smaller correlations can be omitted.

- Compute probabilities $p(\xi_s, \eta_q)$ from the correlations as shown above.

- The strength of the multidimensional linear approximations depends on the nonuniformity of the distribution $p(\xi_s, \eta_q)$, $(\xi_s, \eta_q) \in \mathbb{F}_2^s \times \mathbb{F}_2^q$.

- Nonuniformity of $p(\xi_s, \eta_q)$ is measured in terms of capacity:

$$C = \sum_{\xi_s, \eta_q} \left(p(\xi_s, \eta_q) - 2^{-(s+q)} \right)^2$$

$$= \sum_{(u, w) \in U \times W \setminus \{(0, 0)\}} c(u, w)^2$$
Mathematical Link between SSA and Multidimensional LC
SSA Trail
Multidimensional Linear Trail

The same multitrail was used by Joo Cho in his multidimensional linear attack on PRESENT in CT-RSA 2010. This is not an accidental coincidence.

To see this, let us recall the following correlations

\[f : \mathbb{F}_2^s \times \mathbb{F}_2^t \rightarrow \mathbb{F}_2^n \]

\[c_x(u \cdot x + v \cdot z + w \cdot f(x, z)) = 2^{-n}(-1)^{v \cdot z} \sum_{x \in \mathbb{F}_2^s} (-1)^{u \cdot x + w \cdot f(x, z)}, \]

for any (fixed) \(z \in \mathbb{F}_2^t \), and

\[c_{x,z}(u \cdot x + v \cdot z + w \cdot f(x, z)) = 2^{-n} \sum_{x \in \mathbb{F}_2^s, z \in \mathbb{F}_2^t} (-1)^{u \cdot x + v \cdot z + w \cdot f(x, z)} \]
The Fundamental Theorem

Theorem

$$2^{-t} \sum_{z \in \mathbb{F}_2^t} c_x (u \cdot x + w \cdot f(x, z))^2 = \sum_{v \in \mathbb{F}_2^t} c_{x,z} (u \cdot x + v \cdot z + w \cdot f(x, z))^2$$

This result, in different contexts and notation, has previously appeared (at least) in:

- K. Nyberg: Linear Approximations of Block Ciphers (1994) (see also the Linear Hull theorem in my first lecture)
Statistical Saturation Link

[Leander 2011]

\[E_k : \mathbb{F}_2^s \times \mathbb{F}_2^t \rightarrow \mathbb{F}_2^q \times \mathbb{F}_2 \]

Straightforward application of the Fundamental Theorem gives

\[
2^{-s} \sum_{x_s \in \mathbb{F}_2^s} \sum_{w \in W \setminus \{0\}} c_{x_t}(w \cdot E_k(x_s, x_t))^2 = \sum_{u \in U} \sum_{w \in W \setminus \{0\}} c_x(u \cdot x + w \cdot E_k(x))^2
\]

The expression on the right hand side is the capacity of the multidimensional linear approximation

\[u \cdot x + w \cdot E_k(x), u \in U = \mathbb{F}_2^s \times \{0\}, w \in W = \mathbb{F}_2^q \times \{0\}. \]

The expression on the left hand side is the average capacity of the distribution of the values

\[y_q, \text{ where } y = (y_q, y_r) = E_k(x) \]

taken over all fixations \(x_s \in \mathbb{F}_2^s \).
The mathematical link offers different ways for performing the attacks. Running the known plaintext multidimensional linear attack takes 2^{s+q} memory.

Sampling for evaluation of the expression on the left can be done with 2^q memory using chosen plaintext.

Question: How much the behaviour for a fixed x_s differs from the average behaviour?
Distinguishing Distributions
The Best Distinguisher

- Given two probability distributions \(p = (p_z) \) and \(p' = (p'_z) \) the question is to decide whether a given sample distribution \(q(N) = (q_z(N)) \) obtained from a sample of size \(N \), is drawn from \(p \) or \(p' \).

- The optimal distinguisher is based on the LLR

\[
\text{LLR}(q(N)) = \sum_{z \in \text{Supp}(q)} q_z(N) \log \frac{p_z}{p'_z}
\]

- The distinguisher decides for \(p \) if \(\text{LLR}(q) \) is above a threshold, otherwise it decides for \(p' \).

- The threshold determines the error probability as a function of the size \(N \) of the sample.

- The error probability depends of the Chernoff information \(C(p, p') \) between \(p \) and \(p' \)
Close to Uniform Distribution

- Let p' be the uniform distribution and p a close-to-uniform probability distribution over a set of cardinality M

- For close-to-uniform distributions, the Chernoff information between p and p' can be approximated using the squared Euclidean distance between the distributions or the sum of squared correlations over nontrivial linear approximations as:

$$\frac{M}{8 \ln 2} \sum_z (p_z - p'_z)^2 = \frac{1}{8 \ln 2} \sum_{w \neq 0} |c_z (w \cdot z)|^2$$

- We call the quantity

$$M \sum_z (p_z - p'_z)^2 = \sum_{w \neq 0} |c_z (w \cdot z)|^2$$

the capacity of p and denote it by $C(p)$.
Data Requirement for Optimal Distinguisher

▶ Baignères and Vaudenay (ICITS 2008) showed that, for close to uniform distributions, the data requirement for the LLR distinguisher can be given as:

\[N_{\text{LLR}} \approx \frac{\lambda}{C(p)}, \]

where the constant \(\lambda \) depends only on the success probability.

▶ In practice, accurate estimates of the alternative \(p \) required for LLR computation is hard to obtain. But an estimate of its capacity may be available.

▶ Junod 2003: \(\chi^2 \) test is asymptotically optimal distinguisher for distributions of binary variables.
Problem: Determine data complexity of the χ^2 distinguisher that is reasonably accurate also for probability distributions with large support of size M.

Solution: use χ^2 cryptanalysis by Vaudenay (ACM CCS 1995). It is based on using

- We derive a bound for data complexity and demonstrate its accuracy by using distributions of support size 10^8.
- We can also predict the data complexity of the SSA.
Distinguishing Test

- Distinguishing probability distributions over a large set of values of size M
 - Uniform distribution
 - Non-uniform distribution p with known capacity

$$C(p) = M \sum_{\eta=1}^{M} (p(\eta) - \frac{1}{M})^2.$$

- Problem. Determine the data complexity estimates of the χ^2 distinguisher.

- Solution. Use statistic

$$T = NM \sum_{\eta=1}^{M} (q(\eta) - \frac{1}{M})^2,$$

where q is the distribution obtained from the data.

- Need to determine the probability distribution of T in both cases.
Uniform Binomial Distribution

N number of data (sample size)

M cells with equal probabilities $\frac{1}{M}$

$X(\eta)$ number of data in cell η

$X(\eta) \sim B\left(\frac{1}{M}\right)$

For large N:

$X(\eta) \sim \mathcal{N}\left(\frac{N}{M}, \frac{N}{M}\right)$
Nonuniform Binomial Distribution

\(N \) number of data (sample size)

\(M \) cells with different probabilities \(p(\eta), \eta = 1, 2, \ldots, M \)

\(Y(\eta) \) number of data in cell \(\eta \)

\(Y(\eta) \sim B(p(\eta)) \)

For \(N \) large:

\[
Y(\eta) \sim \mathcal{N}(Np(\eta), Np(\eta)) \approx \mathcal{N}(Np(\eta), N/M)
\]
Central and Noncentral χ^2 Distributions

Let $X_i = \mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, 2, \ldots, n$. Then

$$T_0 = \sum_{i=1}^{n} \frac{(X_i - \mu_i)^2}{\sigma_i^2}$$

has central χ^2_{n-1}-distribution with $n - 1$ degrees of freedom, and

$$T_1 = \sum_{i=1}^{n} \frac{(X_i)^2}{\sigma_i^2}$$

has noncentral $\chi^2_{n-1}(\delta)$-distribution with $n - 1$ degrees of freedom and noncentrality parameter

$$\delta = \sum_{i=1}^{n} \frac{\mu_i^2}{\sigma_i^2}.$$

The expected values and variances are

$$\mu_{T_0} = n - 1, \quad \sigma_{T_0}^2 = 2(n - 1)$$

$$\mu_{T_1} = n - 1 + \delta, \quad \sigma_{T_1}^2 = 2(n - 1 + 2\delta).$$
Probability Distributions of T

- If q is drawn from uniform distribution, then
 \[
 T = T_0 = \sum_{\eta=1}^{M} \frac{(Nq(\eta) - N/M)^2}{N/M} \sim \chi^2_{M-1}.
 \]

- If q is drawn from nonuniform distribution p, then
 \[
 T = T_1 = \sum_{\eta=1}^{M} \frac{(Nq(\eta) - N/M)^2}{N/M} \sim \chi^2_{M-1}(\delta),
 \]
 where
 \[
 \delta = \sum_{\eta=1}^{M} \frac{(Np(\eta) - N/M)^2}{N/M} = NC(p).
 \]

- Denote $C(p) = C$.
Normal Approximations of Distributions of T

- If q is drawn from uniform distribution, then
 \[T = T_0 \sim \mathcal{N}(M, 2M). \]

- If q is drawn from nonuniform distribution with capacity C, then
 \[T = T_1 \sim \mathcal{N}(M + NC, 2(M + 2NC)). \]

- We will see later that the relevant area of N will be around \sqrt{M}/C. Assuming
 \[N < \frac{M}{2C}, \]
 we obtain that the variance of T_1 is upperbounded by $4M$.
The χ^2 Test

H_0: q is drawn from the uniform distribution
H_1: q is drawn from unknown nonuniform distribution with capacity C

H_1 is accepted if and only if

$$T \geq M + \tau, \text{ where } 0 < \tau < NC.$$

Threshold τ is set such that the probabilities

$$\alpha = \Pr[T_0 \geq M + \tau]$$
$$\beta = \Pr[T_1 < M + \tau]$$

of Type 1 and 2 errors are equal. Then we obtain

$$\tau = \frac{NC}{1 + \sqrt{2}}, \text{ and } \alpha = \beta = \Phi \left(-\frac{NC}{(2 + \sqrt{2})\sqrt{M}} \right)$$
Data Complexity

For success probability $P_S = 1 - \frac{\alpha + \beta}{2} = 1 - \alpha$ we get

$$\frac{NC}{(2 + \sqrt{2})\sqrt{M}} \geq -\Phi^{-1}(1 - P_S) = \Phi^{-1}(P_S),$$

that is,

$$N \geq (2 + \sqrt{2})\Phi^{-1}(P_S) \frac{\sqrt{M}}{C}.$$

For typical P_S, the multiplier of \sqrt{M}/C is around 8. Then we must check that

$$8\frac{\sqrt{M}}{C} < \frac{M}{2C}$$

which holds for $M \geq 2^8$.
Experiment on a Large Distribution

![Graph showing the relationship between the number of data pairs and the statistic T/M.](image-url)

- **Statistic**: T/M
- **Number of data pairs**: N
- **Value of M**: 10^8

The graph illustrates the behavior of the statistic T/M as the number of data pairs N increases.
Experiment on a Large Distribution

- $M = 10^8$
- $C = 10^{-4}$
- x-axis = N
- y-axis:

$$y = \frac{T}{M} \approx \begin{cases} 1, & \text{for random,} \\ 1 + \frac{C}{M}N, & \text{for cipher.} \end{cases}$$

- So the slope of the upper bunch of lines should be equal to $C/M = 10^{-12}$. From the data the slope is $\approx 10^{-12}$.
- Distinguisher seems to work for $N \geq 5 \cdot 10^8 = 5\sqrt{M}/C$
[Collard and Standaert CT-RSA 2009]
SSA

- y-axis:

\[y = \log_2 \frac{T}{MN} = \log_2 T - \log_2 M - \log_2 N \]

- x-axis: \(x = \log_2 N \); thus

\[y = \log_2 T - \log_2 M - x \]

- For random curves \(T \approx M \), and we get the line \(y = -x \).

- For cipher curves \(T \approx M + CN \) and

\[y = \log_2 \left(\frac{1}{N} + \frac{C}{M} \right) \rightarrow \log_2 \frac{C}{M} \quad \text{as} \quad N \rightarrow \infty. \]

- Given that \(M = 2^8 \) we can read average capacities of the distributions for small number of rounds from the picture.
Definition [Selçuk, JoC 2009] A key recovery attack for an n-bit key achieves an advantage of a bits over exhaustive search, if the correct key is ranked among the top $r = 2^{n-a}$ out of all 2^n key candidates.

Assumption (Wrong-key Hypothesis) There are two different probability distributions p and p' such that for the right key κ_0, the data is drawn from p and for a wrong key $\kappa \neq \kappa_0$ the data is drawn from p'. For simplicity, we restrict to the case where p' is the uniform distribution over M values.

p is a non-uniform distribution. Statistical analysis exploits known non-uniformity of p.
Ranking Statistics T

- Rearrange the keys κ according to their values $T(\kappa)$ in decreasing order of magnitude.

- Index the ordered T values as

$$T_0 \geq T_1 \geq \cdots \geq T_{2^n-1}$$

where T_i is called the ith order statistic.

- For fixed advantage a the right key κ_0 should be among the $r = 2^{n-a}$ highest ranking keys.

Theorem[Selçuk, JoC 2009] The statistic T_r for the wrong key in the r^{th} position is distributed as

$$T_r \sim \mathcal{N}(\mu_a, \sigma_a^2), \text{ where}$$

$$\mu_a = F_W^{-1}(1 - 2^{-a}) \text{ and } \sigma_a \approx \frac{2^{-(n+a)/2}}{f_W(\mu_a)}.$$

Here f_W and F_W are the density function and the cumulative density function of the statistic $T(\kappa)$ for a wrong key κ.

Assume that \(T(\kappa_0) \sim \mathcal{N}(\mu_R, \sigma^2_R) \).

Then

\[
P_S = \Pr(T(\kappa_0) - T_r > 0) = \Phi \left(\frac{\mu_R - \mu_a}{\sqrt{\sigma^2_R + \sigma^2_a}} \right),
\]

since \(T(\kappa_0) - T_r \sim \mathcal{N}(\mu_R - \mu_a, \sigma^2_R + \sigma^2_a) \).
\textbf{\(\chi^2\) Statistics}

- Assume that a good estimate of the capacity \(C(p)\) of \(p\) is available.
- Compute statistic

\[T = NM \sum_{\eta=1}^{M} (q(\eta) - \frac{1}{M})^2, \]

where \(q\) is the distribution obtained from the data.
- For the correct key

\[T = T_1 \sim \chi_{M-1}^2(\text{NC}(p)) \approx \mathcal{N}(M + \text{NC}, 2(M + 2\text{NC})). \]

- For the wrong key

\[T = T_0 \sim \chi_{M-1}^2 \approx \mathcal{N}(M, 2M). \]
Estimates

\[\mu_R = M + NC(p) \]
\[\sigma_R^2 = 2(M + 2NC(p)) \]

\[\mu_a = b \sqrt{2M} + M \]
\[\sigma_a^2 = \frac{2M}{2^{n+a} \phi(b)^2}, \]

where \(b = \Phi^{-1}(1 - 2^{-a}) \).

- Estimate \(\sigma_a^2 < M \).
- Restrict to the case \(NC(p) < M/4 \). This is not essential restriction, since finally \(NC(p) \) will be close to a small constant multiple of \(\sqrt{M} \).
- Obtain \(\sqrt{\sigma_a^2 + \sigma_R^2} < 2\sqrt{M} \).
Data Complexity

By solving data complexity from the formula for success probability, we obtain an upperbound

\[N_{\chi^2} = \frac{\left(b + \sqrt{2} \phi^{-1}(P_S) \right) \sqrt{2M}}{C(p)} \]

Compare with the FSE 2009 formula:

\[N_{\chi^2} = \frac{2\sqrt{M}b + 4(\phi^{-1}(2P_S - 1))^2}{C(p)}, \]

where it is assumed that \(b \), that is, advantage \(a \) is large, and that \(P_S \) is large.
Summary

- For close-to-uniform distribution \(p \) (with support of any size), an upperbound to the data requirement of the LLR distinguisher can be given as:

\[
N_{\text{LLR}} = \frac{\lambda}{C(p)},
\]

where the constant \(\lambda \) depends only on the success probability.

- For close-to-uniform distribution \(p \) with support of cardinality \(M \), the data requirement of the \(\chi^2 \) distinguisher can be given as:

\[
N_{\chi^2} = \frac{\lambda' \sqrt{M}}{C(p)},
\]

where

\[
\lambda' = \sqrt{2}\Phi^{-1}(1 - 2^{-a}) + 2\Phi^{-1}(P_S) \quad \text{(key recovery)}
\]

\[
\lambda' = (\sqrt{2} + 2)\Phi^{-1}(P_S) \quad \text{(distinguisher)}
\]