
Provable Security Basics
+
Selected topics in provable security of symmetric schemes

Tom Shrimpton
Portland State University

Provable Security Basics
+
Selected topics in provable security of symmetric schemes

Tom Shrimpton
Portland State University

The many faces of symmetric encryption,
from a “provable-security” perspective

The many faces of symmetric encryption,
from a “provable-security” perspective

What kind of primitive
is encryption?

How do we find
security notions
for encryption?

How do you know
a notion is any good?

Are all reasonable
notions equally good?

How do you prove
a construction meets
a security notion?

Does sharing a key
provide a useful
authentication check?

How do you build
an authenticated encryption
scheme?

Nonce-based encryption?
What’s a nonce?

[…]

Building a “privacy-providing” primitive

“I want my communication with Bob
 to be private” -- Alice

What kind of “communication”?

SMS? Voice? Video? HTML? Javascript? Powerpoint slides? Financial data?

Building a “privacy-providing” primitive

“I want my communication with Bob
 to be private” -- Alice

What kind of “communication”?

“Private” from whom?
A nosey eavesdropper, sniffing wireless packets in a coffee shop?
A business competitor, who pays an ISP to send your traffic for some analysis?
A nation/state agency, with huge computing resources and lots of “side information”?

SMS? Voice? Video? HTML? Javascript? Powerpoint slides? Financial data?

Building a “privacy-providing” primitive

“I want my communication with Bob
 to be private” -- Alice

What kind of “communication”?

“Private” from whom?
A nosey eavesdropper, sniffing wireless packets in a coffee shop?
A business competitor, who pays an ISP to send your traffic for some analysis?
A nation/state agency, with huge computing resources and lots of “side information”?

SMS? Voice? Video? HTML? Javascript? Powerpoint slides? Financial data?

What do you mean by “private”?
No one (other than Bob) can recover the full contents of the communication?
No one can recover more than 1/2 of the contents? (Does it matter which ½?)
No one can determine the “type” of the communication? (e.g. financial data vs. HTML)
…

What kind of “communication”?

“Private” from whom?
A nosey eavesdropper, sniffing wireless packets in a coffee shop?
A business competitor, who pays an ISP to send your traffic for some analysis?
A nation/state agency, with huge computing resources and lots of “side information”?

SMS? Voice? Video? HTML? Javascript? Powerpoint slides? Financial data?

What do you mean by “private”?
No one (other than Bob) can recover the full contents of the communication?
No one can recover more than 1/2 of the contents? (Does it matter which ½?)
No one can determine the “type” of the communication? (e.g. financial data vs. HTML)
…

“All of that,
and maybe other
things, too.”

“From the most
powerful attacker
you can manage.”

“You are annoying!
Just make it work, and
make sure it is fast,
too.”

Alice’s
Box

arbitrary
data

Bob’s
Box

“private” data
communication recovered

data

API of Alice’s Box

Inputs: 1. bitstrings of any length

Outputs: bitstrings of any length
 (but as short as possible
 to save communication costs)

API of Bob’s Box

Inputs: 1. bitstrings of any length

Outputs: bitstrings of any length

Alice’s
Box

arbitrary
data

Bob’s
Box

“private” data
communication recovered

data

API of Alice’s Box

Inputs: 1. bitstrings of any length
 2. something that the adversary
 does not know (the “secret”)

Outputs: bitstrings of any length
 (but as short as possible
 to save communication costs)

API of Bob’s Box

Inputs: 1. bitstrings of any length
 2. something that the adversary
 does not know (the “secret”)

Outputs: bitstrings of any length

secret secret

Alice’s
Box

arbitrary
data

Bob’s
Box

“private” data
communication recovered

data

API of Alice’s Box

Inputs: 1. bitstrings of any length
 2. something that the adversary
 does not know (the “secret”)

Outputs: bitstrings of any length
 (but as short as possible
 to save communication costs)

API of Bob’s Box

Inputs: 1. bitstrings of any length
 2. something that the adversary
 does not know (the “secret”)

Outputs: bitstrings of any length

Should we assume that the adversary does not know
the algorithms inside of Alice and Bob’s boxes? NO.

secret secret

Alice’s
Box

arbitrary
data

Bob’s
Box

“private” data
communication recovered

data

API of Alice’s Box

Inputs: 1. bitstrings of any length
 2. a (short) secret “key”

Outputs: bitstrings of any length

API of Bob’s Box

Inputs: 1. bitstrings of any length
 2. a (short) secret “key”

Outputs: bitstrings of any length

key key

Encryption
E�

arbitrary
data

Decryption
D�

“private” data
communication recovered

data

API of Encryption

Inputs: 1. bitstrings of any length
 2. a (short) secret “key”

Outputs: bitstrings of any length

API of Decryption

Inputs: 1. bitstrings of any length
 2. a (short) secret “key”

Outputs: bitstrings of any length

key key

Encryption
algorithm

Decryption
algorithm

key plaintext ciphertext “invalid”

An Encryption Scheme is a triple of algorithms

Key-generation
algorithm

Encryption
algorithm

Decryption
algorithm

An Encryption Scheme is a triple of algorithms

Key-generation
algorithm

May be randomized
or stateful

Always deterministic

Encryption
algorithm

Decryption
algorithm

Correctness condition:

For all K,M such that E(K,M) ≠ ?, Pr[D(K, E(K,M)) = M] = 1

An Encryption Scheme is a triple of algorithms

Key-generation
algorithm

over coins of encryption alg.

Developing a notion of “privacy”

1. What kinds of things do we want to
prevent the adversary from achieving?

recover the key
recover the plaintext
determine if this plaintext was sent before
determine the parity of the plaintext
determine if the first and last half of the
 plaintext are the same
…

Adversary tries to:

Developing a notion of “privacy”

1. What kinds of things do we want to
prevent the adversary from achieving?

recover the key
recover the plaintext
determine if this plaintext was sent before
determine the parity of the plaintext
determine if the first and last half of the
 plaintext are the same
…

Adversary tries to:

2. What can the adversary “do” with
respect to M and C in it’s attack?

observe ciphertexts
observe plaintexts and ciphertexts
pick the plaintexts, and then see the
corresponding ciphertexts
adaptively pick the plaintexts, and
see the corresponding ciphertexts

Adversary can:

Developing a notion of “privacy”

1. What kinds of things do we want to
prevent the adversary from achieving?

recover the key
recover the plaintext
determine if this plaintext was sent before
determine the parity of the plaintext
determine if the first and last half of the
 plaintext are the same
…

Adversary tries to:

2. What can the adversary “do” with
respect to M and C in it’s attack?

observe ciphertexts
observe plaintexts and ciphertexts
pick the plaintexts, and then see the
corresponding ciphertexts
adaptively pick the plaintexts, and
see the corresponding ciphertexts

Adversary can:

encryption
oracle

adaptive
chosen-plaintext
adversary

Communication is private if…

Adversary can’t recover the key

encryption
oracle

adaptive
chosen-plaintext
adversary

Communication is private if…

Adversary can’t recover the key

"

encryption
oracle

adaptive
chosen-plaintext
adversary

Communication is private if…

Adversary can’t recover the key

"
Adversary can’t recover the plaintext

encryption
oracle

adaptive
chosen-plaintext
adversary

Communication is private if…

Adversary can’t recover the key

"
Adversary can’t recover the plaintext

"

encryption
oracle

adaptive
chosen-plaintext
adversary

Communication is private if…

Adversary can’t recover the key

"
Adversary can’t recover the plaintext

"

“Anything that is efficiently computable about the plaintexts given the ciphertexts
is efficiently computable without seeing the ciphertexts.”

Indistinguishability of ciphertexts under an
adaptive chosen-plaintext attack (IND-CPA)

random bit b

These must be the
same length

“b”

Indistinguishability of ciphertexts under an
adaptive chosen-plaintext attack (IND-CPA)

random bit b

Adversarial “resources”:

These must be the
same length

“b”

the number of oracle queries,
the total length in bits of the queries,
the time-complexity of the adversary,

Exploring IND-CPA

We say is IND-CPA secure if the IND-CPA
advantage is “small” for all “resource efficient” adversaries

example: adversaries A with

achieve advantage at most
But what “small” and “reasonable”
mean is up to the user!

Exploring IND-CPA

Can this scheme be IND-CPA secure?

Exploring IND-CPA

Can this scheme be IND-CPA secure?

Adversary A:
 fix distinct strings of the same length
 ask query
 if oracle response then return 0
 else return 1

Exploring IND-CPA

Can any deterministic scheme be IND-CPA secure?

Exploring IND-CPA

Can any deterministic scheme be IND-CPA secure?

Adversary A:
 fix distinct strings of the same length
 ask query , receiving in return
 ask query , receiving in return
 if then return 0
 else return 1

An alternative definition of privacy:
“Real or Random” (RoR-CPA)

Adversarial “resources”:
the number of oracle queries,
the total length in bits of the queries,
the time-complexity of the adversary,

Which notion is “better”: RoR-CPA or IND-CPA?

Claim: Any encryption scheme that is IND-CPA secure,
 is also RoR-CPA secure

Claim: Any encryption scheme that is IND-CPA secure,
 is also RoR-CPA secure

Proof idea: show the contrapositive, if a scheme is not
 RoR-CPA secure, then it is not IND-CPA secure.

Claim: Any encryption scheme that is IND-CPA secure,
 is also RoR-CPA secure

Proof idea: show the contrapositive, if a scheme is not
 RoR-CPA secure, then it is not IND-CPA secure.

Let A be an efficient RoR-CPA adversary, gaining advantage

We build an efficient IND-CPA adversary B, that runs A as a
“black-box” subroutine, that gains advantage

Claim: Any encryption scheme that is IND-CPA secure,
 is also RoR-CPA secure

Proof idea: show the contrapositive, if a scheme is not
 RoR-CPA secure, then it is not IND-CPA secure.

Let A be an efficient RoR-CPA adversary, gaining advantage

We build an efficient IND-CPA adversary B, that runs A as a
“black-box” subroutine, that gains advantage

Conclusion: if is small for all efficient B,
 then must be small, too

So, we start with
an RoR-adversary A
that gains some
RoR advantage

A!

B!

Want to build a good IND-CPA adversary B!
by running A and simulating its expected experiment

A!

B!

M!

A!

B!

M!

A!

B!

M!

A!

B!

M!

C!

A!

B!

d’!

A!

B!

d’!

d’! Thus, B perfectly simulates A’s expected experiment
and will “win” whenever A wins

And hence,

as we claimed.

So we say “IND-CPA security implies RoR-CPA security”

What about the other way around?

Claim: Any encryption scheme that is RoR-CPA secure,
 is also IND-CPA secure

Proof idea: show the contrapositive, if a scheme is not
 IND-CPA secure, then it is not RoR-CPA secure.

Claim: Any encryption scheme that is RoR-CPA secure,
 is also IND-CPA secure

Proof idea: show the contrapositive, if a scheme is not
 IND-CPA secure, then it is not RoR-CPA secure.

Let A be an efficient IND-CPA adversary, gaining advantage

We build an efficient RoR-CPA adversary B, that runs A as a
“black-box” subroutine, that gains advantage

Conclusion: if is small for all efficient B,
 then must be small, too

So we say “IND-CPA security implies RoR-CPA security”

And “RoR-CPA security implies IND-CPA security”, too

(Although the two directions are not equally “tight”)

There are a variety of definitions of IND-CPA that
are all qualitatively equivalent:

Left-or-Right IND-CPA

Real-or-Random IND-CPA

Real-or-0s IND-CPA

Find-then-Guess IND-CPA

Semantic security

Check out [Bellare, Desai, Pointcheval, Rogaway]

Although not all of the reductions have the same
quantitative “tightness”

So, now we have

 -- a precise syntax for the object we want to build
 -- a precise target security notion, left-or-right IND-CPA

How should we build this thing?

“Perfect” encryption

There does exist one “perfect” encryption scheme: One Time Pad

plaintext message

random bits (key)

random ciphertext bits (independent of message)

Sadly, requires a stream of random bits as long as the
length of all messages you want to send.

all ciphertexts
are equally likely

plaintext message

computationally indistinguishable from random bits

computationally indistinguishable from random bits

Perhaps we can turn a
short secret key into

Approximating One-Time Pad

plaintext message

computationally indistinguishable from random bits

computationally indistinguishable from random bits

Intuitively, making small blocks of “random-looking” bits should be easier
(at least, not harder) than making a long string all at once

So we need a function that outputs small blocks
of “random looking” bits

Consider the set ,
the “family” of all functions mapping n-bit strings to n-bit strings

f

1.  Sampling an element of

identity
map

everything-to-zero
map

Two equivalent viewpoints on picking a “random function”

Consider the set ,
the “family” of all functions mapping n-bit strings to n-bit strings

f

1.  Sampling an element of

identity
map

everything-to-zero
map

Two equivalent viewpoints on picking a “random function”

Consider the set ,
the “family” of all functions mapping n-bit strings to n-bit strings

It’s not hard to see that

f

1.  Sampling an element of

identity
map

everything-to-zero
map

2. fill in the function table “lazily”

00…00
00…01
00…10

…

11…10
11…11

111010110…110101

10000010…100111

010101110…100111
1011111111…100111

00000010…011111

Two equivalent viewpoints on picking a “random function”

Consider the set ,
the “family” of all functions mapping n-bit strings to n-bit strings

plaintext message

ciphertext

Imagine we could sample and then encrypt via…

…

… we get one-time pad! But there’s still a catch.

(What is the size of the key
 for this encryption scheme?)

plaintext message

ciphertext

Imagine we could sample and then encrypt via…

…

… we get one-time pad! But there’s still a catch.

bits
of key

Pseudorandom Functions (PRFs)

“My oracle is…”

FK! or

X

Let be viewed as a “keyed” function family

f!

Y

FK! FK!

h ctr in

C1 C2 C3

h ctr+1 in h ctr+2 in

M1 M2 M3

C0

FK!

Counter-mode (CTR) encryption over a function family F!

FK!

Cb

h ctr+(b-1) in

Mb

…

For the next message,

Initialization:

FK! FK!

h ctr in

C1 C2 C3

h ctr+1 in h ctr+2 in

M1 M2 M3

C0

FK! FK!

Cb

h ctr+(b-1) in

Mb

…

Claim: If is a secure PRF, then
(counter-mode over F) is IND-CPA secure.

FK! FK!

h ctr in

C1 C2 C3

h ctr+1 in h ctr+2 in

M1 M2 M3

C0

FK! FK!

Cb

h ctr+(b-1) in

Mb

…

Claim: If is a secure PRF, then
(counter-mode over F) is IND-CPA secure.

Proof idea: break the proof into two steps

 1. replace FK with a random function f, and argue that any
 adversary that can detect this can “break” PRF-security of F

Proof idea: break the proof into two steps

 1. replace FK with a random function f, and argue that any
 adversary that can detect this can “break” PRF-security of F

Claim: If is a secure PRF, then
(counter-mode over F) is IND-CPA secure.

f! f!

h ctr in

C1 C2 C3

h ctr+1 in h ctr+2 in

M1 M2 M3

C0

f! f!

Cb

h ctr+(b-1) in

Mb

…

Proof idea: break the proof into two steps

 1. replace FK with a random function f, and argue that any
 adversary that can detect this can “break” PRF-security of F

 2. analyze IND-CPA security of

Claim: If is a secure PRF, then
(counter-mode over F) is IND-CPA secure.

(for reference)

So, we start with
an IND-CPA adversary
that gains some
IND-CPA advantage
in attacking CTR[F]

Now we add a “useful”
version of 0 to the right side

I claim that:

I claim that:

I claim that:

If PRF bit b=1:
B simulates IND-CPA
experiment for CTR[F],!
And outputs 1
if A guesses the bit

I claim that:

If PRF bit b=1:

If PRF bit b=0:

B simulates IND-CPA
experiment for CTR[F],!
And outputs 1
if A guesses the bit

B simulates IND-CPA
experiment for CTR[Func(n,n)],!
And outputs 1
if A guesses the bit

I claim that:

If PRF bit b=1:

If PRF bit b=0:

B simulates IND-CPA
experiment for CTR[F],!
And outputs 1
if A guesses the bit

B simulates IND-CPA
experiment for CTR[Func(n,n)],!
And outputs 1
if A guesses the bit

I claim that:

So by subtracting:

I claim:

Proof sketch: all ciphertexts are independent of the IND-CPA experiment bit!
 So probability of guessing the bit is at most 1/2

And we’re done.

Wait… blockciphers are not function families,
they are permutation families

How does relate to ?

1.  Sampling an element of

identity
map

2. fill in the permutation table “lazily”

00…00
00…01
00…10

…

11…10
11…11

111010110…110101

10000010…100111

010101110…100111
1011111111…100111

00000010…011111

Two equivalent viewpoints on picking a “random permutation”

π	

Consider the set ,
the “family” of all permutations over n-bit strings

Pseudorandom Permutations (PRPs)

“My oracle is…”

EK! or

X

Let be viewed as a “keyed” function family

π	

Y

The PRP-PRF Switching Lemma

Let be viewed as a “keyed” function family

Let A be an adversary, asking q queries to its single oracle. Then

The PRP-PRF Switching Lemma

Let be viewed as a “keyed” function family

Let A be an adversary, asking q queries to its single oracle. Then

So, for example,

Requires care, but the
reason for the “birthday term”
is obvious!

all values already
assigned as outputs
of the oracle

all values still
free to be assigned
as outputs

Fundamental lemma
of game-playing
(Bellare, Rogaway)

Fundamental lemma
of game-playing
(Bellare, Rogaway)

union bound

What about cipher-block-chaining (CBC) mode?

C1 C2 C3

M1 M2 M3

C0

IV

EK EK EK

CBC mode appears in IPSec, SSH, TLS, …

How to handle the IV?
Fixed IV?
Counter IV?
Random IV?

CBC with a fixed IV

C1 C2 C3 C0

0n

f f f

(Parse message Mb into blocks)

CBCf (Mb), CBCf (M’b),…
“b”

…,(M’0,M’1),(M0,M,1)

b

Can the adversary easily guess the bit?

C1 C2 C3 C0

h ctr i

f f f

(Parse message Mb into blocks)

CBCf (Mb), CBCf (M’b),…
“b”

…,(M’0,M’1),(M0,M,1)

Can the adversary easily guess the bit?

CBC with a counter IV
b

Proof idea: break the proof into two steps

 1. replace FK with a random function f, and argue that any
 adversary that can detect this, can “break” PRF-security of F

 2. analyze IND-CPA security of

Claim: If is a secure PRF, then
(CBC-mode, with a random IV, over F) is IND-CPA secure.

C1 C2 C3

M1 M2 M3

C0

$

f f f

Until f is called on the same value twice, the ciphertext
blocks are random and independent of the message blocks.

There are µ/n chances for an f-domain “collision”

(Proof Sketch)

Privacy? What about authenticity?

C

C

M’ M

K K

"

C’

Authenticity: Alice wants to be sure she’s received Bob’s message

Might alter the
ciphertext

C’
Is C’ an
authentic
ctxt from Bob?

Is M’ an
authentic
ptxt from Bob?

Privacy? What about authenticity?

C

C

M’ M

K K

"

C’

Authenticity: Alice wants to be sure she’s received Bob’s message

Might alter the
ciphertext

C’
Is C’ an
authentic
ctxt from Bob?

Is M’ an
authentic
ptxt from Bob?

Encryption
algorithm

Decryption
algorithm

Key-generation
algorithm

First of all, we need a syntactic addition

Decryption now
has the ability to
“complain”

(New primitive, new syntax!)

Folklore idea: add “redundancy” to encryption

C1 C2 C3

M1 M2 M3

C0

EK EK EK

random
IV

C4

EK

hash(M1M2M3)

Decryption: just like CBC, except return ? if hash doesn’t match

publicly computable
and deterministic

C1 C2 C3 C0

EK EK EK

random
IV

C4

EK

hash(0n0n hash(0n0n)) M1 = 0n M2 = 0n M3 = hash(0n0n)

Can you forge an authentic ciphertext?

C0 C1 C2 C3 decrypts properly,
and so is “authentic” by the
if-it-decrypts-the-authentic measure…

So what’s wrong?

It’s not CBC-mode is “bad”, it’s just that traditional
encryption schemes have been designed to provide

 PRIVACY ONLY

This can be made to work… (more later)

M1 M2 M3 hash(M1M2M3)

Variable-input-length (VIL)
“strong” PRP

C1 C2 C3 C4

(

)

A notion of “authenticity”:
Integrity of Ciphertexts (INT-CTXT)

random
bit b

C M

A notion of “authenticity”:
Integrity of Ciphertexts (INT-CTXT)

Adversarial “resources”:
the number of oracle queries,
the total length in bits of the queries,
the time-complexity of the adversary,

random
bit b

C M

A notion of “authenticity”:
Integrity of Ciphertexts (INT-CTXT)

random
bit b

C M

To prevent “trivial wins” of the game, adversary is forbidden
to ask C of the right oracle if C was returned by the left oracle

Building a simple INT-CTXT secure encryption scheme

Let be a function family.

Define an encryption scheme Π[F] as follows:

Proof idea: break the proof into two steps

 1. replace FK with a random function f, and argue that any
 adversary that can detect this can “break” PRF-security of F!

 2. analyze INT-CTXT security of

Claim: if is a secure PRF,
then Π[F] is an INT-CTXT secure encryption scheme

If the bit b in the
PRF experiment is 1 (resp. 0),
then B simulates the
INT-CTXT experiment
for Π[F] (resp. Π[Func(*,n)]

Consider

f is a random function

Consider

f is a random function

Decryption cases

 0. (X, T) old: not allowed

 1. X old, T “new”: returns because f is deterministic

 2. X new, T old: f(x) uniformly random,

 3. X new, T new: f(x) uniformly random,

(i.e. T not the tag previously
returned with X)

Consider

f is a random function

Decryption cases

 0. (X, T) old: not allowed

 1. X old, T “new”: returns because f is deterministic

 2. X new, T old: f(x) uniformly random,

 3. X new, T new: f(x) uniformly random,

(i.e. T not the tag previously
returned with X)

Consider

f is a random function

Decryption cases

 0. (X, T) old: not allowed

 1. X old, T “new”: returns because f is deterministic

 2. X new, T old: f(x) uniformly random,

 3. X new, T new: f(x) uniformly random,

(i.e. T not the tag previously
returned with X)

Adding IND-CPA…

Let be a function family.

Define an encryption scheme as follows:

Let be an encryption scheme

This is called “Encrypt-then-MAC”

Claim: if is a secure PRF,
and is IND-CPA secure, then
is both IND-CPA and INT-CTXT secure

Claim: if is a secure PRF,
and is IND-CPA secure, then
is both IND-CPA and INT-CTXT secure

Let’s do the easy part first: INT-CTXT

Claim: if is a secure PRF,
and is IND-CPA secure, then
is both IND-CPA and INT-CTXT secure

Let’s do the easy part first: INT-CTXT

If the bit b in the
PRF experiment is 1 (resp. 0),
then B simulates the
INT-CTXT experiment
for Π[F] (resp. Π[Func(*,n)])

Claim: if is a secure PRF,
and is IND-CPA secure, then
is both IND-CPA and INT-CTXT secure

Let’s do the easy part first: INT-CTXT

Claim: if is a secure PRF,
and is IND-CPA secure, then
is both IND-CPA and INT-CTXT secure

Now the “new” part: IND-CPA.
But this is even easier!

Where this reduction B simulates the FK2 part of encryption

The three “Generic Composition” authenticated encryption schemes

Encrypt-then-MAC:

IND-CPA
INT-CTXT

"
"

(IPSec)

The three “Generic Composition” authenticated encryption schemes

Encrypt-then-MAC:

MAC-then-Encrypt:

IND-CPA
INT-CTXT

"
"

(IPSec)

(SSL/TLS)

The three “Generic Composition” authenticated encryption schemes

Encrypt-then-MAC:

MAC-then-Encrypt:

IND-CPA
INT-CTXT

"
"

(IPSec)

(SSL/TLS)

IND-CPA
INT-CTXT

"
"

The three “Generic Composition” authenticated encryption schemes

Encrypt-then-MAC:

MAC-then-Encrypt:

MAC and Encrypt:
(or Encrypt and MAC)

IND-CPA
INT-CTXT

IND-CPA
INT-CTXT

"
"

"

(IPSec)

(SSL/TLS)

(SSH)

"

The three “Generic Composition” authenticated encryption schemes

Encrypt-then-MAC:

MAC-then-Encrypt:

MAC and Encrypt:
(or Encrypt and MAC)

IND-CPA
INT-CTXT

IND-CPA
INT-CTXT

IND-CPA
INT-CTXT

"
"

"

"
"

(IPSec)

(SSL/TLS)

(SSH)

"

(Bellare, Namprempre)

Consider
which is IND-CPA if is…

(Violating INT-CTXT)

MAC-then-Encrypt:

MAC and Encrypt:
(or Encrypt and MAC)

IND-CPA
INT-CTXT

IND-CPA
INT-CTXT

"

"

"

"

Privacy? What about authenticity?

C

C

M’ M

K K

"

C’

Authenticity: Alice wants to be sure she’s received Bob’s message

C’
Is C’ an
authentic
ctxt from Bob?

Is M’ an
authentic
ptxt from Bob?

Privacy? What about authenticity?

C

C

M’ M

K K

"

C’

Authenticity: Alice wants to be sure she’s received Bob’s message

C’
Is C’ an
authentic
ctxt from Bob?

Is M’ an
authentic
ptxt from Bob?

Another notion of “authenticity”:
Integrity of Plaintexts (INT-PTXT)

C M

Adversary wins if
it asks C such that

 1.

 2.
0 or 1

Stick with INT-CTXT if possible!

Achieved (generically) by “MAC-then-Encrypt”
Strictly weaker security goal
Requires calling applications to be aware of repeated plaintexts
Efficient schemes achieve INT-CTXT already

+

-
-
-

Let’s return to this idea

M1 M2 M3

“strong” PRP

C1 C2 C3 C4

Redundancy(M)

Strong PRPs
Let be a permutation family

It’s easy to extend this to the VIL setting, by considering
 , with , to be length-preserving.

M || 080

π	

Intuition: if you encrypt new messages, with redundancy…

… then outputs look like random bitstrings (subject to permutivity)

Y

π-1	

Intuition: if you flip any bit of the output and decrypt…

… then “plaintexts” random, and unlikely to have
correct redundancy

Y’

M || 080 "

N || M || 080

π	

Y

Of course, we’re not guaranteed that messages are new, so we add
a per-message “nonce” (number used once)

This is the “Encode-Encipher” paradigm,
due to Bellare and Rogaway

Encryption
algorithm

Decryption
algorithm

Key-generation
algorithm

New object, new syntax!

A nonce-based encryption scheme is a triple of algorithms

(See Rogaway’s
Nonce-Based Encryption Paper)

Encryption
algorithm

Decryption
algorithm

Key-generation
algorithm

New object, new syntax!

A nonce-based encryption scheme is a triple of algorithms

the nonce space

Encryption
algorithm

Decryption
algorithm

Key-generation
algorithm

New object, new syntax!

A nonce-based encryption scheme is a triple of algorithms

Deterministic!

IND-CPA in the nonce-based setting

Restrictions:

1.

2. No nonce-message pair repeated

“Nonces” are meant to be used once.
An adversary that never repeats a nonce is called “nonce-respecting”

Let’s define a nonce-based encryption scheme from an SPRP.

Let and let contain all strings
up to length 128+80+L for some L > 0 !

N || M || 080

EK!

C

Let’s define a nonce-based encryption scheme from an SPRP.

Let be a length-preserving permutation family.

Let and let contain all strings
up to length 128+80+L for some L > 0 !

N || M || 080

EK!

C

Let’s define a nonce-based encryption scheme from an SPRP.

Let be a length-preserving permutation family.

Let and let contain all strings
up to length 128+80+L for some L > 0 !

Claim: if is a secure SPRP, then this scheme
is both (nonce-based) IND-CPA and (nonce-based) INT-CTXT secure

Proof: exercise (you might need a “bi-directional” version of the PRP-PRF switching lemma…)

Proof intuition:

 1. Replace with

N || M || 080

EK!

C

Proof intuition:

 1. Replace with

 2. Replace with two independent
 random functions

N || M || 080

EK!

C

Proof intuition:

 1. Replace with

 2. Replace with two independent
 random functions

 3. Now uniform random strings in both “directions”
 if nonces are respected

N || M || 080

EK!

C

What makes this work is that SPRPs are (so of) all-or-nothing objects

N || M || 080

EK!

C

Change any bit of input = randomize entire output

Change any bit of output = randomize entire input

But this comes with a cost:

 Loosely, every bit of output (input) must depend
 on every bit of input (output).

C1 C2 C3

X1 X2 X3

EK EK EK

C4

EK

X4

Definitely NOT an SPRP,
even if EK is.

N

SPRPs generally seem to require two full “cryptographic passes”

X1 X2 X3

EK EK EK EK

Xn

N

EK EK EK EK

N

CMC mode
(Halevi and Rogway)

“mask”

C1 C2 C3 C4

C1 C2 C3

X1 X2 X3

EK EK EK

C4

EK

X4

N

Nonce-based encryption is interesting area

This is not IND-CPA secure in the nonce-based setting,
even if nonces are respected.

C1 C2 C3

X1 X2 X3

EK2 EK2 EK2

C4

EK2

X4 N

Nonce-based encryption is interesting area

EK1

But this should work...

C1 C2 C3

X1 X2 X3

f2 f2 f2

C4

f2

X4 N

Nonce-based encryption is interesting area

f1

If f1 and f2 are independent random functions
(so we need E to be a PRF under two random keys)
then all f2 inputs are random…

…what type of bound do you expect?

Encryption
algorithm

Decryption
algorithm

Key-generation
algorithm

Yet more: Deterministic AE with
 “Associated Data” (AEAD)(DAE)

(See Rogaway’s AEAD Paper)

The “header” or
“associated data” space

(See Rogaway and Shrimpton’s
 “Keywrap” Paper)

Here’s one way to build a DAE scheme: SIV mode

plaintext
Header components

(take one and use it for N)

synthetic
IV

Here’s one way to build a DAE scheme: SIV mode

plaintext
Header components

(take one and use it for N)

synthetic
IV

If F is a secure PRF, and is IND-CPA
against nonce-respecting adversaries, then
this is a secure DAE scheme
(IND-CPA and INT-CTXT) (also provides

“nonce-misuse resistance”)

This is NOT the whole story of symmetric encryption!

Many interesting “faces” of symmetric encryption to explore

Message-locked encryption

Format-preserving encryption

Format-transforming encryption

Length-hiding AEAD

“Online” encryption

Key-dependent message encryption

…

Thanks!

