
On Keccak and SHA-3

Guido Bertoni1 Joan Daemen1

Michaël Peeters2 Gilles Van Assche1

1STMicroelectronics

2NXP Semiconductors

Icebreak 2013
Reykjavik, Iceland

June 8, 2013

1 / 61

Outline

1 Origins

2 The sponge construction

3 Inside Keccak

4 SHA-3 forecast

2 / 61

Origins

Outline

1 Origins

2 The sponge construction

3 Inside Keccak

4 SHA-3 forecast

3 / 61

Origins

Symmetric crypto around ’89

Stream ciphers: LFSR-based schemes
no actual design
many mathematical papers on linear complexity

Block ciphers: DES
design criteria not published
DC [Biham-Shamir 1990]: “DES designers knew what they were doing”
LC [Matsui 1992]: “well, kind of”

Popular paradigms, back then (but even now)
property-preservation: strong cipher requires strong S-boxes
confusion (nonlinearity): distance to linear functions
diffusion: (strict) avalanche criterion
you have to trade them off

4 / 61

Origins The banality of DES

Data encryption standard: datapath

5 / 61

Origins The banality of DES

Data encryption standard: F-function

6 / 61

Origins Cellular automata based crypto

A different angle: cellular automata

Simple local evolution rule, complex global behaviour
Popular 3-bit neighborhood rule:

ai ⇐ ai−1 ⊕ (ai OR ai+1)

7 / 61

Origins Cellular automata based crypto

Crypto based on cellular automata

CA guru Stephen Wolfram at Crypto ’85:
looking for applications of CA
concrete stream cipher proposal

Crypto guru Ivan Damgård at Crypto ’89
hash function from compression function
proof of collision-resistance preservation
compression function with CA

Both broken
stream cipher in [Meier-Staffelbach, Eurocrypt ’91]
hash function in [Daemen et al., Asiacrypt ’91]

8 / 61

Origins Cellular automata based crypto

The trouble with Damgård’s compression function

9 / 61

Origins Cellular automata based crypto

Salvaging CA-based crypto

First experiments: investigate cycle distributions
The following rule exhibited remarkable cycle lengths:
γ: flip the bit iff 2 cells at the right are not 01

ai ⇐ ai + 1+ (ai+1 + 1)ai+2

Invertible if periodic boundary conditions and odd length
nonlinear, but unfortunately, weak diffusion

10 / 61

Origins Cellular automata based crypto

Salvaging CA-based crypto, second attempt

Found invertible 5-bit neighborhood rules with good diffusion
Turned out to be composition of γ and following rule

θ : ai ⇐ ai + ai+1 + ai+2

Idea: alternate γ (nonlinearity) and variant of θ (mixing)
Polynomial representation of θ variant:

1+ x3 + x6

mod (1+ xn)

11 / 61

Origins Cellular automata based crypto

Salvaging CA-based crypto, third attempt

Abandon locality by adding in bit transpositions:
π: move bit in cell i to cell 9i modulo the length

Round function: R = π ◦ θ ◦ γ

full diffusion after few rounds!

12 / 61

Origins Cellular automata based crypto

Resulting designs

Round function composed of specialized steps
γ: non-linearity
θ: mixing
π: transposition
ι: addition of some constants for breaking symmetry

Designs directly using this [PhD Thesis Daemen, 1995]

Cellhash (1991): hash function
Subterranean (1992), StepRightUp (1994) and Panama (1997):
hash/stream cipher modules
3-Way and BaseKing (1993-94): block ciphers

Theoretical basis: DC and LC
branch number
correlation matrices
wide trail strategy

13 / 61

The sponge construction

Outline

1 Origins

2 The sponge construction

3 Inside Keccak

4 SHA-3 forecast

14 / 61

The sponge construction

Our beginning: RadioGatún

Initiative to design hash/stream function (late 2005)
rumours about NIST call for hash functions
forming of Keccak Team
starting point: fixing Panama [Daemen, Clapp, FSE 1998]

RadioGatún [Keccak team, NIST 2nd hash workshop 2006]

more conservative than Panama
arbitrary output length primitive
expressing security claim for arbitrary output length primitive

Sponge functions [Keccak team, Ecrypt hash, 2007]

… closest thing to a random oracle with a finite state …
Random sponge

15 / 61

The sponge construction

Intermezzo: block-cipher based compression function

Block cipher in Davies-Meyer mode

16 / 61

The sponge construction

Is a block cipher appropriate?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

17 / 61

The sponge construction

Is a block cipher appropriate?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

17 / 61

The sponge construction

Is a block cipher appropriate?

No diffusion from data path to key
(and tweak) schedule

Let’s remove these artificial barriers…

That’s an iterative permutation!

17 / 61

The sponge construction

The sponge construction

More general than a hash function: arbitrary-length output
Calls a b-bit permutation f, with b = r+ c

r bits of rate
c bits of capacity (security parameter)

18 / 61

The sponge construction

Generic security of the sponge construction

Theorem (Indifferentiability of the sponge construction)

A ≤ N2

2c+1

A: differentiating advantage of random sponge from a random oracle
N: total data complexity in r-bit blocks
c: capacity
[Keccak team, Eurocrypt 2008]

Informally, a random sponge is like a random oracle when N < 2c/2.

Collision-, preimage-resistance, etc., up to security strength c/2
Assumes f is a random permutation

provably secure against generic attacks
…but not against attacks that exploit specific properties of f

19 / 61

The sponge construction

Regular hashing

Electronic signatures

Data integrity (shaXsum …)

Data identifier (Git, online anti-virus, peer-2-peer …)

See [Cryptographic sponge functions] for more details

20 / 61

The sponge construction

Salted hashing

Randomized hashing (RSASSA-PSS)

Password storage and verification (Kerberos, /etc/shadow)

21 / 61

The sponge construction

Mask generation function

output length often dictated by application …
… rather than by security strength level

Key derivation function in SSL, TLS
Full-domain hashing in public key cryptography

electronic signatures RSASSA-PSS [PKCS#1]
encryption RSAES-OAEP [PKCS#1]
key encapsulation methods (KEM)

22 / 61

The sponge construction

Message authentication codes

0 f f

Key

…

Padded message

f ff

MAC

As a message authentication code
Simpler than HMAC [FIPS 198]

Required for SHA-1, SHA-2 due to length extension property
HMAC is no longer needed for sponge!

23 / 61

The sponge construction

Stream encryption

0 f f

Key IV

f

Key stream

As a stream cipher
Long output stream per IV: similar to OFB mode
Short output stream per IV: similar to counter mode

24 / 61

The sponge construction

Single pass authenticated encryption

0 f f

Key

…

Padded messageIV

f

Key stream

ff

MAC

Authentication and encryption in a single pass!

Secure messaging (SSL/TLS, SSH, IPSEC …)

25 / 61

The sponge construction

The duplex construction

Generic security equivalent to Sponge [Keccak team, SAC 2011]

Applications include:
Authenticated encryption: spongeWrap
Reseedable pseudorandom sequence generator

26 / 61

The sponge construction

A new branch of symmetric crypto

Primitive: (iterative) permutation

Modes can be made for quasi all functions

Simpler than block ciphers: no key input

More flexible: r− c trade-off

Permutation-based cryptography!

27 / 61

Inside Keccak

Outline

1 Origins

2 The sponge construction

3 Inside Keccak

4 SHA-3 forecast

28 / 61

Inside Keccak

Design approach

Hermetic sponge strategy

Instantiate a sponge function

Claim a security level of 2c/2

Our mission

Design permutation f without exploitable properties

29 / 61

Inside Keccak

Criteria for a strong permutation

Classical LC/DC criteria
absence of large differential propagation probabilities
absence of large input-output correlations
…differential and linear trails and clustering

Infeasibility of the CICO problem
Resistance against

Slide and symmetry-exploiting attacks
Algebraic attacks
…

Keeping efficiency in mind

30 / 61

Inside Keccak

The CICO problem

Given partial input and output, determine remaining parts

Important in many attacks

Pre-image generation in hashing

31 / 61

Inside Keccak

The CICO problem

Given partial input and output, determine remaining parts

Important in many attacks

State recovery in stream encryption

32 / 61

Inside Keccak

How to build a strong permutation

Like a block cipher
Sequence of identical rounds
Round consists of sequence of simple step mappings

…but not quite
No key schedule
Round constants instead of round keys
Inverse permutation need not be efficient

33 / 61

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

34 / 61

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

34 / 61

Inside Keccak

Keccak

Instantiation of a sponge function
Using the permutation Keccak-f

7 permutations: b ∈ {25, 50, 100, 200, 400, 800, 1600}
… from toy over lightweight to high-speed …

SHA-3 instance: r = 1088 and c = 512
permutation width: 1600
security strength 256: post-quantum sufficient

Lightweight instance: r = 40 and c = 160
permutation width: 200
security strength 80: same as (initially expected from) SHA-1

See [The Keccak reference] for more details

34 / 61

Inside Keccak

Keccak-f state: an array of 5× 5× 2ℓ bits

x

y z
state

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

35 / 61

Inside Keccak

Keccak-f state: an array of 5× 5× 2ℓ bits

x

y z
lane

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

35 / 61

Inside Keccak

Keccak-f state: an array of 5× 5× 2ℓ bits

x

y z
slice

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

35 / 61

Inside Keccak

Keccak-f state: an array of 5× 5× 2ℓ bits

x

y z
row

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

35 / 61

Inside Keccak

Keccak-f state: an array of 5× 5× 2ℓ bits

x

y z
column

5× 5 lanes, each containing 2ℓ bits (1, 2, 4, 8, 16, 32 or 64)

(5× 5)-bit slices, 2ℓ of them

35 / 61

Inside Keccak

χ, the nonlinear mapping in Keccak-f

“Flip bit if neighbors exhibit 01 pattern”

Operates independently and in parallel on 5-bit rows

Cheap: small number of operations per bit

Algebraic degree 2, inverse has degree 3

LC/DC propagation properties easy to describe and analyze

36 / 61

Inside Keccak

Propagating differences through χ

The propagation weight…
… is equal to − log2(fraction of pairs);
… is determined by input difference only;
… is the size of the affine base;
… is the number of affine conditions.

37 / 61

Inside Keccak

θ′, a first attempt at mixing bits

Compute parity cx,z of each column

Add to each cell parity of neighboring columns:

bx,y,z = ax,y,z ⊕ cx−1,z ⊕ cx+1,z

Cheap: two XORs per bit

38 / 61

Inside Keccak

Diffusion of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

39 / 61

Inside Keccak

Diffusion of θ′ (kernel)

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

40 / 61

Inside Keccak

Diffusion of the inverse of θ′

θʹ

1+
(
1+ y+ y2 + y3 + y4

) (
x2 + x3

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)

41 / 61

Inside Keccak

ρ for inter-slice dispersion

We need diffusion between the slices …
ρ: cyclic shifts of lanes with offsets

i(i+ 1)/2 mod 2ℓ, with
(
x
y

)
=

(
0 1
2 3

)i−1 (
1
0

)
Offsets cycle through all values below 2ℓ

42 / 61

Inside Keccak

ι to break symmetry

XOR of round-dependent constant to lane in origin
Without ι, the round mapping would be symmetric

invariant to translation in the z-direction
susceptible to rotational cryptanalysis

Without ι, all rounds would be the same
susceptibility to slide attacks
defective cycle structure

Without ι, we get simple fixed points (000 and 111)

43 / 61

Inside Keccak

A first attempt at Keccak-f

Round function: R = ι ◦ ρ ◦ θ′ ◦ χ

Problem: low-weight periodic trails by chaining:

χ: propagates unchanged with weight 4
θ′: propagates unchanged, because all column parities are 0
ρ: in general moves active bits to different slices …
…but not always

44 / 61

Inside Keccak

The Matryoshka property

Patterns in Q′ are z-periodic versions of patterns in Q

Weight of trail Q′ is twice that of trail Q (or 2n times in general)

45 / 61

Inside Keccak

π for disturbing horizontal/vertical alignment

ax,y ← ax′,y′ with
(
x
y

)
=

(
0 1
2 3

)(
x′

y′

)

46 / 61

Inside Keccak

A second attempt at Keccak-f

Round function: R = ι ◦ π ◦ ρ ◦ θ′ ◦ χ

Solves problem encountered before:

π moves bits in same column to different columns!

Almost there, still a final tweak …

47 / 61

Inside Keccak

Tweaking θ′ to θ

θ

1+
(
1+ y+ y2 + y3 + y4

) (
x+ x4z

)(
mod

⟨
1+ x5, 1+ y5, 1+ zw

⟩)
48 / 61

Inside Keccak

Inverse of θ

θ

1+
(
1+ y+ y2 + y3 + y4

)
Q,

with Q = 1+ (1+ x+ x4z)−1 mod
⟨
1+ x5, 1+ zw

⟩
Q is dense, so:

Diffusion from single-bit output to input very high
Increases resistance against LC/DC and algebraic attacks

49 / 61

Inside Keccak

Keccak-f summary

Round function:
R = ι ◦ χ ◦ π ◦ ρ ◦ θ

Number of rounds: 12+ 2ℓ
Keccak-f[25] has 12 rounds
Keccak-f[1600] has 24 rounds

Some features
weak alignment
high level of parallellism and symmetry
efficient and flexible in hard- and software
suited for protection against side-channel attack
[Debande, Le and Keccak team, HASP 2012 + ePrint 2013/067]

50 / 61

Inside Keccak

Performance in software

Faster than SHA-2 on all modern PCs

KeccakTree faster than MD5 on some
platforms

C/b Algo Strength
4.79 keccakc256treed2 128
4.98 md5 broken! 64
5.89 keccakc512treed2 256
6.09 sha1 broken! 80
8.25 keccakc256 128
10.02 keccakc512 256
13.73 sha512 256
21.66 sha256 128

[eBASH, hydra6 (AMD Bulldozer),

http://bench.cr.yp.to/]

51 / 61

http://bench.cr.yp.to/

Inside Keccak

Efficient and flexible in hardware

From Kris Gaj’s presentation at SHA-3, Washington 2012:

52 / 61

SHA-3 forecast

Outline

1 Origins

2 The sponge construction

3 Inside Keccak

4 SHA-3 forecast

53 / 61

SHA-3 forecast

Output length oriented approach

Output Collision Pre-image Required Relative SHA-3
length resistance resistance capacity perf. instance

n = 224 s ≤ 112 s ≤ 224 c = 448 ×1.125 SHA3n224
n = 256 s ≤ 128 s ≤ 256 c = 512 ×1.063 SHA3n256
n = 384 s ≤ 192 s ≤ 384 c = 768 ÷1.231 SHA3n384
n = 512 s ≤ 256 s ≤ 512 c = 1024 ÷1.778 SHA3n512
n s ≤ n/2 s ≤ n c = 2n × 1600−c

1024

s: security strength level [NIST SP 800-57]

These instances address the SHA-3 requirements, but:
multiple security strengths each
levels outside of [NIST SP 800-57] range

Performance penalty!

54 / 61

SHA-3 forecast

Security strength oriented approach

Security Collision Pre-image Required Relative SHA-3
strength resistance resistance capacity perf. instance

s = 112 n ≥ 224 n ≥ 112 c = 224 ×1.343 SHA3c224
s = 128 n ≥ 256 n ≥ 128 c = 256 ×1.312 SHA3c256
s = 192 n ≥ 384 n ≥ 192 c = 384 ×1.188 SHA3c384
s = 256 n ≥ 512 n ≥ 256 c = 512 ×1.063 SHA3c512
s n ≥ 2s n ≥ s c = 2s × 1600−c

1024 SHA3[c=2s]

s: security strength level [NIST SP 800-57]

These SHA-3 instances
are consistent with philosophy of [NIST SP 800-57]
provide a one-to-one mapping to security strength levels

Higher efficiency

55 / 61

SHA-3 forecast

NIST SHA-3 standardization plans

A new FIPS number (not 180-n)

Two capacities: 256 and 512

6 instances with domain separation between them

Tree-hashing ready: Sakura coding

Sponge instances SHA-2 drop-in replacements
Keccak[c = 256](M||11||11)

⌊Keccak[c = 256](M||11||001)⌋224
⌊Keccak[c = 256](M||11||101)⌋256

Keccak[c = 512](M||11||11)
⌊Keccak[c = 512](M||11||001)⌋384
⌊Keccak[c = 512](M||11||101)⌋512

56 / 61

SHA-3 forecast

Sakura and tree hashing
..

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

57 / 61

SHA-3 forecast

Sakura and tree hashing
..

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

57 / 61

SHA-3 forecast

Sakura and tree hashing
..

Sound tree hashing is relatively easy to achieve

Sufficient conditions for indifferentiability from RO
[Keccak team, ePrint 2009/210 — updated April 2013]

Defining tree hash modes addressing all future use cases is hard
A chosen number of leaves for a chosen amount of parallelism?
Or a binary tree with the option of saving intermediate hash results?

Defining future-proof tree hash coding is easy

Sakura, a flexible coding for tree hashing

Automatically satisfying the sufficient conditions of [ePrint 2009/210]
For any underlying hash function (not just Keccak)
For any tree topology
⇒ no conflicts adding future tree structures

See [Keccak team, ePrint 2013/231] for more details

57 / 61

SHA-3 forecast

Ongoing work

Boosting performance of keyed modes
usage: MAC, stream cipher, CAESAR
better generic security bound in keyed mode
reduced-round Keccak-f instances
bounding differential and linear trail weights
dedicated keyed modes

Protection against side-channel attacks

…

58 / 61

SHA-3 forecast

Conclusions

Trying to do things right pays off in the long run
re-factoring over patching
simplicity over complexity
result-focused over publication-driven

Team up with critical minds
overlapping competences rather than complementary
keep good ideas and abandon mistakes
not too much ego please

Great to work with Guido, Michaël and Gilles!

59 / 61

SHA-3 forecast

Thanks for your attention!

http://sponge.noekeon.org/
http://keccak.noekeon.org/

60 / 61

http://sponge.noekeon.org/
http://keccak.noekeon.org/

SHA-3 forecast

Our references
..

Sakura: a flexible coding for tree hashing, ePrint 2013
Debande, Le and KT, PA of HW impl. protected with secret sharing, HASP 2012
Permutation-based enc., auth. and auth. enc., DIAC 2012
Differential propagation in Keccak, FSE 2012
Van Keer and KT, Keccak implementation overview (version 3.1 or later)
KeccakTools (version 3.2 or later)
Duplexing the sponge: authenticated enc. and other applications, SAC 2011
On alignment in Keccak, Ecrypt II Hash Workshop 2011
On the security of the keyed sponge construction, SKEW 2011
The Keccak reference (version 3.0 or later)
The Keccak SHA-3 submission, 2011
Building power analysis resistant implementations of Keccak, SHA-3 2010
Sponge-based pseudo-random number generators, CHES 2010
Note on zero-sum distinguishers of Keccak-f, NIST hash forum 2010
Note on Keccak parameters and usage, NIST hash forum 2010
Sufficient conditions for sound tree and seq. hashing modes, ePrint 2009
Note on side-channel attacks and their counterm…, NIST hash forum 2009
The road from Panama to Keccak via RadioGatún, Dagstuhl 2009
Cryptographic sponge functions (version 0.1 or later)
On the indifferentiability of the sponge construction, Eurocrypt 2008

Sponge functions, comment to NIST and Ecrypt Hash Workshop 2007

http://sponge.noekeon.org/papers.html

http://keccak.noekeon.org/papers.html

61 / 61

http://sponge.noekeon.org/papers.html
http://keccak.noekeon.org/papers.html

	Origins
	The banality of DES
	Cellular automata based crypto

	The sponge construction
	Inside Keccak
	SHA-3 forecast

