
Sage & Algebraic Techniques for the Lazy Symmetric
Cryptographer

Martin R. Albrecht
@martinralbrecht

Crypto Group, DTU Compute, Denmark

IceBreak, Reykjavik, Iceland
#icebreak

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Blurb

Sage open-source mathematical so�ware system
“Creating a viable free open source alternative to Magma, Maple,
Mathematica and Matlab.”

Sage is a free open-source mathematics so�ware system licensed under the GPL. It
combines the power of many existing open-source packages into a common
Python-based interface.

First release 2005 Latest version 5.9 released 2013-05-03
> 300 releases Shell, webbrowser (GUI), library
> 180 developers ∼ 100 components
> 200 papers cite Sage > 2100 subscribers [sage-support]
> 100,000 web visitors/month > 6, 500 downloads/month

How to use it

Sage can be used via the command line, as a webapp hosted on your local computer
and via the Internet, or embedded on any website.

Check out: http://aleph.sagemath.org and https://cloud.sagemath.com/

http://aleph.sagemath.org
https://cloud.sagemath.com/

“How do I do . . . in Sage?”
. . . It’s easy: implement it and send us a patch.

Sage is a largely volunteer-driven e�ort, this means that
▸ developers work on whatever suits their needs best;
▸ the quality of code in Sage varies:

▸ is a generic or a specialised, optimised implementation used,
▸ how much attention is paid to details,
▸ is your application an untested “corner case”,
▸ how extensive are the tests, the documentation, or
▸ is the version of a particular package up to date.

▸ you cannot expect people to �x your favourite bug quickly (although we do try!),
▸ you can get involved and make Sage better for your needs!

send us a patch
I will highlight relevant issues to encourage you to get involved.

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Python & Cython

Sage does not come with yet-another ad-hoc mathematical programming language, it
uses Python instead.

▸ one of the most widely used programming languages (Google, IML, YouTube,
NASA),

▸ easy for you to de�ne your own data types and methods on it (bitstreams,
ciphers, rings, whatever),

▸ very clean language that results in easy to read code,
▸ a huge number of libraries: statistics, networking, databases, bioinformatic,
physics, video games, 3d graphics, numerical computation (scipy), and serious
“pure” mathematics (via Sage)

▸ easy to use existing C/C++ libraries from Python (via Cython)

Python Example: Networking

Scapy is a powerful interactive packet manipulation program written in Python. It is able to
forge or decode packets of a wide number of protocols, send them on the wire, capture them,
match requests and replies, and much more. It can easily handle most classical tasks like
scanning, tracerouting, probing, unit tests, attacks or network discovery.

from scapy.all import *

class Test(Packet):
name = "Test packet"
fields_desc = [ShortField("test1", 1),

ShortField("test2", 2)]

print Ether ()/IP()/ Test(test1=x,test2=y)

p=sr1(IP(dst="127.0.0.1")/ICMP ())
if p:

p.show()

Cython: Your Own Code

sage: cython("""
def foo(unsigned long a, unsigned long b):

cdef int i
for i in range (64):

a ^= a*(b<<i)
return a

""")
sage: foo(a,b)

�is generates C code like this:
for (__pyx_t_1 = 0; __pyx_t_1 < 64; __pyx_t_1 +=1) {

__pyx_v_i = __pyx_t_1;
__pyx_v_a = (__pyx_v_a ^ _pyx_v_a * (__pyx_v_b << __pyx_v_i));

}

Cython: External Code I

#cargs -std=c99 -ggdb
cdef extern from "katan.c":

ctypedef unsigned long uint64_t
void katan32_encrypt(uint64_t *p, uint64_t *c, uint64_t *k, int nr)
void katan32_keyschedule(uint64_t *k, uint64_t *key , int br)
uint64_t ONES

def k32_encrypt(plain , key):
cdef int i
cdef uint64_t _plain [32], _cipher [32], kk[2*254] , _key [80]

for i in range (80):
_key[i] = ONES if key[i] else 0

for i in range (32):
_plain[i] = ONES if plain[i] else 0

katan32_keyschedule(kk, _key , 254)
katan32_encrypt(_plain , _cipher , _key , 254)

return [int(_cipher[i]%2) for i in range (32)]

sage: load("sage -katan.spyx")
sage: k32_encrypt(random_vector(GF(2),32), random_vector(GF(2) ,80))
[1, 0, 0, 1, 0, 1, 0, 0, 0, 1, ... 0, 1, 0, 0]

Cython: External Code II

sage: rv = lambda : random_vector(GF(2) ,32)
sage: E = lambda : k32_encrypt(rv(),rv())

sage: l = [E() for _ in range (1024)]
sage: l = [sum(e) for e in l]
sage: r.summary(l) # We are using R!
Min. 1st Qu. Median Mean 3rd Qu. Max.
8.00 14.00 16.00 16.03 18.00 27.00

sage: c = E()
sage: K = GF(next_prime (2^32))
sage: g = K(sum(2^i*c[i] for i in range (32))); g
2859908881
sage: g.multiplicative_order () # We are using Pari/GP
858993462

sage: A = matrix(GF(2),32,32,[E() for _ in range (32)])
sage: A.rank() # We are using M4RI
30

Symmetric Multiprocessing

Embarrassingly parallel computations on multicore machines are easy in Sage:
sage: @parallel (2)
....: def f(n):
....: return factor(n)
....:

sage: %time _ = [f(2^217 -1) , f(2^217 -1)]
CPU times: user 1.07 s, sys: 0.02 s, total: 1.09 s
Wall time: 1.10 s

sage: %time _ = list(f([2^217 -1 , 2^217 -1]))
CPU times: user 0.00 s, sys: 0.02 s, total: 0.02 s
Wall time: 0.62 s

sage: 1.08/0.62
1.74193548387097

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Dense Linear Algebra

sage: for p in (2,3,4,5,7,8,9,11):
....: K = GF(p,’a’)
....: A = random_matrix(K ,2000 ,2000)
....: B = random_matrix(K ,2000 ,2000)
....: t = cputime ()
....: C = A*B
....: print "%32s %7.3f"%(K,cputime(t))
....:
Finite Field of size 2 0.008 # M4RI
Finite Field of size 3 0.972 # LinBox
Finite Field in a of size 2^2 0.048 # M4RIE
Finite Field of size 5 0.996 # LinBox
Finite Field of size 7 0.968 # LinBox
Finite Field in a of size 2^3 0.072 # M4RIE
Finite Field in a of size 3^2 695.863 # generic
Finite Field of size 11 1.020 # LinBox

send us a patch
We know how to make Fpk really fast, but someone needs to step up.
FLINT 2.3 (in Sage 5.10) improves Fp for 223 < p < 264 , but an interface is missing.

Sparse Linear Algebra

to construct and compute with sparse matrices by using the sparse=True keyword.
sage: A = random_matrix(GF(32003) ,2000 ,2000 , density =~200 , sparse=True)
sage: %time copy(A).rank() # LinBox
CPU times: user 3.26 s, sys: 0.05 s, total: 3.31 s
Wall time: 3.33 s
2000
sage: %time copy(A). echelonize () # custom code
CPU times: user 9.51 s, sys: 0.02 s, total: 9.52 s
Wall time: 9.56 s
sage: v = random_vector(GF (32003) ,2000)
sage: %time _ = copy(A). solve_right(v) # LinBox + custom code
CPU times: user 3.74 s, sys: 0.00 s, total: 3.74 s
Wall time: 3.76 s

send us a patch
LinBox’s claim to fame is good support for black box algorithms for sparse and
structured matrices. Help us to expose more of this functionality.

Lattices

Sage includes both NTL and fpLLL:
sage: from sage.libs.fplll.fplll import gen_intrel # Knapsack -style
sage: A = gen_intrel (50 ,50); A
50 x 51 dense matrix over Integer Ring ...
sage: min(v.norm ().n() for v in A.rows ())
2.17859318110950 e13

sage: L = A.LLL() # using fpLLL , NTL optional
sage: L[0]. norm ().n()
5.47722557505166

sage: L = A.BKZ() # using NTL
sage: L[0]. norm ().n()
3.60555127546399

send us a patch
Our version of fpLLL is old (to be updated in 5.11, but an interface to its BKZ is
missing).

Symbolics

Sage uses Pynac (GiNaC fork) and Maxima for most of its symbolic manipulation.
SymPy is included in Sage as well.
sage: q = var(’q’)
sage: expr = (1-1/q)/(q-1)
sage: f = expr.function(q); f
q |--> -(1/q - 1)/(q - 1)
sage: f(10)
1/10
sage: f(q^2)
-(1/q^2 - 1)/(q^2 - 1)
sage: f(0.1)
10.0000000000000
sage: g = P.random_element (); g
4*x^2 + 3/4*x
sage: f(g)
-4*(4/((16*x + 3)*x) - 1)/((16*x + 3)*x - 4)

sage: expr.simplify_full ()
1/q
sage: expr.integrate(q)
log(q)

Statistics

Sage ships R which is a very powerful package for doing statistics, Sage also uses
SciPy for stats related tasks.
sage: O() # some oracle
sage: l = [O() for _ in range (10000)] # we sample it
sage: r.summary(l) # and ask R about it

Min. 1st Qu. Median Mean 3rd Qu. Max.
-154.000 -31.000 2.000 0.298 33.000 140.000
sage: import pylab # use pylab to compute a histogram
sage: a,b,_ = pylab.hist(l,100)
sage: line(zip(b,a)) # and Sage’s code to plot it

send us a patch
Our interface to R could be greatly
improved

Coding�eory

Computations in coding theory are mainly realised by GAP. For example, we can ask
about the minimum distance of a code.
sage: A = random_matrix(GF(2), 8, 8)
sage: while A.rank() != 8: A = random_matrix(GF(2), 8, 8)
sage: A
[0 0 0 0 1 0 1 0]
[1 1 0 1 1 1 1 0]
[0 0 1 1 0 1 1 0]
[0 0 0 1 0 1 1 0]
[0 0 0 0 0 0 1 0]
[0 1 0 1 0 0 1 0]
[1 0 1 0 1 0 0 1]
[1 0 0 1 1 1 0 0]
sage: G = matrix(GF(2), 8, 8, 1). augment(A.T)
sage: LinearCodeFromCheckMatrix(G). minimum_distance ()

send us a patch
Our interface to GAP sucks, try doing the same over F2e to see how much.
Our coding theory is rather basic: things tend to get pushed down to linear codes, i.e.,
disregarding their structure.

Graph�eory

▸ builds on NetworkX (Los Alamos’s Python graph library)
▸ graph isomorphism testing – Robert Miller’s new implementation
▸ graph databases
▸ 2d and 3d visualization

sage: D = graphs.DodecahedralGraph ()
sage: D.show3d ()

sage: E = D.copy()
sage: gamma = SymmetricGroup (20). random_element ()
sage: E.relabel(gamma)
sage: D.is_isomorphic(E)
True
sage: D.radius ()
5

S-Boxes I

▸ We create the Present S-box
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2); S
(12, 5, 6, 11, 9, 0, 10, 13, 3, 14, 15, 8, 4, 7, 1, 2)
sage: type(S)
<class ’sage.crypto.mq.sbox.SBox’>

▸ evaluate it
sage: S(0)
12
sage: S([0,0,0,1])
[0, 1, 0, 1]

▸ compute the interpolation polynomial
sage: f = S.interpolation_polynomial ()
sage: f(0), S(0)
(a^3 + a^2, 12)

f = a13(x14 + x13) + a6(x12 + x6 + 1) + a11(x11 + x4) + a14(x10 + x9) +
a10(x8 + x3 + x2) + a2x7 + a9x5

S-Boxes II

▸ compute the linear approximation matrix
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: S.linear_approximation_matrix ()
[8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 0 0 -4 0 -4 0 0 0 0 0 -4 0 4]
[0 0 2 2 -2 -2 0 0 2 -2 0 4 0 4 -2 2]
[0 0 2 2 2 -2 -4 0 -2 2 -4 0 0 0 -2 -2]
[0 0 -2 2 -2 -2 0 4 -2 -2 0 -4 0 0 -2 2]
[0 0 -2 2 -2 2 0 0 2 2 -4 0 4 0 2 2]
[0 0 0 -4 0 0 -4 0 0 -4 0 0 4 0 0 0]
[0 0 0 4 4 0 0 0 0 -4 0 0 0 0 4 0]
[0 0 2 -2 0 0 -2 2 -2 2 0 0 -2 2 4 4]
[0 4 -2 -2 0 0 2 -2 -2 -2 -4 0 -2 2 0 0]
[0 0 4 0 2 2 2 -2 0 0 0 -4 2 2 -2 2]
[0 -4 0 0 -2 -2 2 -2 -4 0 0 0 2 2 2 -2]
[0 0 0 0 -2 -2 -2 -2 4 0 0 -4 -2 2 2 -2]
[0 4 4 0 -2 -2 2 2 0 0 0 0 2 -2 2 -2]
[0 0 2 2 -4 4 -2 -2 -2 -2 0 0 -2 -2 0 0]
[0 4 -2 2 0 0 -2 -2 -2 2 4 0 2 2 0 0]

S-Boxes III

▸ and the di�erence distribution matrix:
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: S.difference_distribution_matrix ()
[16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
[0 0 0 4 0 0 0 4 0 4 0 0 0 4 0 0]
[0 0 0 2 0 4 2 0 0 0 2 0 2 2 2 0]
[0 2 0 2 2 0 4 2 0 0 2 2 0 0 0 0]
[0 0 0 0 0 4 2 2 0 2 2 0 2 0 2 0]
[0 2 0 0 2 0 0 0 0 2 2 2 4 2 0 0]
[0 0 2 0 0 0 2 0 2 0 0 4 2 0 0 4]
[0 4 2 0 0 0 2 0 2 0 0 0 2 0 0 4]
[0 0 0 2 0 0 0 2 0 2 0 4 0 2 0 4]
[0 0 2 0 4 0 2 0 2 0 0 0 2 0 4 0]
[0 0 2 2 0 4 0 0 2 0 2 0 0 2 2 0]
[0 2 0 0 2 0 0 0 4 2 2 2 0 2 0 0]
[0 0 2 0 0 4 0 2 2 2 2 0 0 0 2 0]
[0 2 4 2 2 0 0 2 0 0 2 2 0 0 0 0]
[0 0 2 2 0 0 2 2 2 2 0 0 2 2 0 0]
[0 4 0 0 4 0 0 0 0 0 0 0 0 0 4 4]

S-Boxes IV

▸ recover a bunch of boolean polynomials that satisfy the relations of the S-box:
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: S.polynomials () #default: degree =2
[x1*x2 + x0 + x1 + x3 + y3,
x0*x1 + x0*x2 + x0 + x1 + y0 + y2 + y3 + 1,
x0*x3 + x1*x3 + x1*y0 + x0*y1 + x0*y2 + x1 + x2 + y2,
x0*x3 + x0*y0 + x1*y1 + x0 + x2 + y2,
x0*x2 + x0*y0 + x0*y1 + x1*y2 + x1 + x2 + x3 + y2 + y3, ...]

▸ write the S-box in algebraic normal form
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: P.<y0 ,y1,y2,y3 ,x0,x1,x2 ,x3> = PolynomialRing(GF(2),order=’lex’)
sage: X = [x0,x1 ,x2,x3]
sage: Y = [y0,y1 ,y2,y3]
sage: S.polynomials(X=X,Y=Y,degree=3,groebner=True)
[y0 + x0*x1*x3 + x0*x2*x3 + x0 + x1*x2*x3 + x1*x2 + x2 + x3 + 1,
y1 + x0*x1*x3 + x0*x2*x3 + x0*x2 + x0*x3 + x0 + x1 + x2*x3 + 1,
y2 + x0*x1*x3 + x0*x1 + x0*x2*x3 + x0*x2 + x0 + x1*x2*x3 + x2,
y3 + x0 + x1*x2 + x1 + x3]

Boolean Functions I

sage: from sage.crypto.boolean_function import *
sage: P.<x0,x1 ,x2,x3 > = BooleanPolynomialRing ()
sage: b = x0*x1 + x2*x3
sage: f = BooleanFunction(b)
sage: [b(x[0],x[1],x[2],x[3]) for x in GF (2)^4]
[0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 1, 1, 0]
sage: f.truth_table ()
(False , False , False , True , False , False , False , True , False , False ,
False , True , True , True , True , False)

Boolean Functions II

sage: WT = f.walsh_hadamard_transform (); WT
(-4, -4, -4, 4, -4, -4, -4, 4, -4, -4, -4, 4, 4, 4, 4, -4)
sage: f.absolute_walsh_spectrum ()
{4: 16}
sage: f.nonlinearity ()
6
sage: 2^(4 -1) - (1/2)* max([abs(x) for x in WT])
6

Boolean Functions III

sage: f.autocorrelation ()
(16, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
sage: f.absolute_autocorrelation ()
{16: 1, 0: 15}
sage: f.absolut_indicator ()
0
sage: f.is_bent ()
True
sage: f.is_balanced ()
False
sage: f.is_symmetric ()
False
sage: f.sum_of_square_indicator ()
256
sage: f.correlation_immunity ()
0

sage: R.<x> = GF(2^8,’a’)[]
sage: B = BooleanFunction(x^31)
sage: B.algebraic_immunity ()
4

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Here’s a picture of a kitten

What are Algebraic Attacks?

1. Algebraic attacks model a cryptographic primitive (such as a block cipher) as a
system of equations.

2. �en, by applying (algebraic) transformations to these equations they (attempt
to) recover information about the secret of the primitive (the key).

Hence, they are quite di�erent in spirit from statistical techniques such as linear and
di�erential cryptanalysis.

A Polemic History of Algebraic Attacks I

1959 – the “prophecy”1

“�us, if we could show that solving a certain system requires at least as much
work as solving a system of simultaneous equations in a large number of
unknowns, of a complex type, then we would have a lower bound of sorts for
the work characteristic.” – Claude Shannon

1This quote is often given to back up the claim that Claude Shannon predicted algebraic attacks. I
don’t think this quote delivers this. It merely states a design goal not that different from what is now
known as provable security.

A Polemic History of Algebraic Attacks II

2002 – the breakthrough
Crucial Cipher Flawed, Cryptographers Claim – Two cryptographers say that
the new Advanced Encryption Standard, [. . .] has a hole in it. Although some
of their colleagues doubt the validity of their analysis, the cryptographic
community is on edge, wondering whether the new cipher can withstand a
future assault.

– Science Magazine

A Polemic History of Algebraic Attacks III

2011 – the disillusion

No proper block cipher has been broken using algebraic techniques
faster than with other techniques

So, why bother?

Algebraic techniques
1. are one of the few choices if very few plaintext-ciphertext pairs are available,
2. become more relevant as focus shi�s toward (very) lightweight constructions,
3. can be combined with other techniques such as side-channel attacks,
4. o�er a trade-o� for researcher time vs. CPU times
5. are fun . . .well, to some anyway!

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

SP-Networks I

We construct an equation system for the block cipher Present, which

▸ is a substituion-permutation network,
▸ has a block size of 64 bits,
▸ either takes 80-bit or 128-bit keys (Present-80 and -128 resp.)
▸ has 31 rounds (shorter variants are denoted by Present-{80,128}-Nr),
▸ is conceptually simple, and
▸ has been extensively studied.

A. Bogdanov, L. Knudsen, G. Leander, C. Paar, A. Poschmann, M. Robshaw, Y. Seurin, and
C. Vikkelsoe.
PRESENT: An ultra-lightweight block cipher.
In Cryptographic Hardware and Embedded Systems - CHES 2007, volume 7427 of Lecture
Notes in Computer Science, pages 450–466, Berlin, Heidelberg, New York, 2007. Springer
Verlag.

SP-Networks II

Key Addition and the Permutation Layer

▸ Key addition is easy, if Xi is a bit before key addition and Yi is a bit a�er key
addition, we write:

Yi + Xi + Ki(= 0).
▸ the Permutation layer is just a permutation of wires given by the rule

s ⋅ j + i⇒ B ⋅ i + j for 0 ≤ j < 16 and 0 ≤ i < 4,

hence we simply rename variables.

S-Box I

�e S-box is a non-linear operation.
However, �nding equations is still easy.

As an example consider the 3-bit (since it
�ts on the slides) S-box

[7, 6, 0, 4, 2, 5, 1, 3].

Construct the matrix on the right and
perform Gaussian elimination on it.

0 1 2 3 4 5 6 7

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 x0
0 0 1 1 0 0 1 1 x1
0 1 0 1 0 1 0 1 x2
1 1 0 1 0 1 0 0 y0
1 1 0 0 1 0 0 1 y1
1 0 0 0 0 1 1 1 y2
0 0 0 0 0 0 1 1 x0x1
0 0 0 0 0 1 0 1 x0x2
0 0 0 0 0 1 0 0 x0y0
0 0 0 0 1 0 0 1 x0y1
0 0 0 0 0 1 1 1 x0y2
0 0 0 1 0 0 0 1 x1x2
0 0 0 1 0 0 0 0 x1y0
0 0 0 0 0 0 0 1 x1y1
0 0 0 0 0 0 1 1 x1y2
0 1 0 1 0 1 0 0 x2y0
0 1 0 0 0 0 0 1 x2y1
0 0 0 0 0 1 0 1 x2y2
1 1 0 0 0 0 0 0 y0y1
1 0 0 0 0 1 0 0 y0y2
1 0 0 0 0 0 0 1 y1y2

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S-Box II

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 x0y0 + x1 + x2 + y0 + y1 + 1
0 1 0 0 0 0 0 0 x0y0 + x0 + x1 + y2 + 1
0 0 1 0 0 0 0 0 x0y0 + x0 + y0 + 1
0 0 0 1 0 0 0 0 x0y0 + x0 + x2 + y1 + y2
0 0 0 0 1 0 0 0 x0y0 + x0 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 1 0 0 x0y0
0 0 0 0 0 0 1 0 x0y0 + x2 + y0 + y2
0 0 0 0 0 0 0 1 x0y0 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x0x2 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x0x1 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x0y1 + x0 + x2 + y0 + y2
0 0 0 0 0 0 0 0 x0y0 + x0y2 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x1x2 + x0 + x1 + x2 + y2 + 1
0 0 0 0 0 0 0 0 x0y0 + x1y0 + x0 + x2 + y1 + y2
0 0 0 0 0 0 0 0 x0y0 + x1y1 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x1y2 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x0y0 + x2y0 + x1 + x2 + y1 + 1
0 0 0 0 0 0 0 0 x2y1 + x0 + y1 + y2
0 0 0 0 0 0 0 0 x2y2 + x1 + y1 + 1
0 0 0 0 0 0 0 0 y0y1 + x0 + x2 + y0 + y1 + y2
0 0 0 0 0 0 0 0 y0y2 + x1 + x2 + y0 + y1 + 1
0 0 0 0 0 0 0 0 y1y2 + x2 + y0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

S-Box III

If you cannot be bothered to do that yourself, use Sage:
sage: S = mq.SBox(7,6,0,4,2,5,1,3) # 3-bit S-box
sage: S.polynomials ()
[x0*x2 + x1 + y1 + 1,
x0*x1 + x1 + x2 + y0 + y1 + y2 + 1,
x0*y1 + x0 + x2 + y0 + y2,
x0*y0 + x0*y2 + x1 + x2 + y0 + y1 + y2 + 1,
x1*x2 + x0 + x1 + x2 + y2 + 1,
x0*y0 + x1*y0 + x0 + x2 + y1 + y2 ,
x0*y0 + x1*y1 + x1 + y1 + 1,
x1*y2 + x1 + x2 + y0 + y1 + y2 + 1,
x0*y0 + x2*y0 + x1 + x2 + y1 + 1,
x2*y1 + x0 + y1 + y2 ,
x2*y2 + x1 + y1 + 1,
y0*y1 + x0 + x2 + y0 + y1 + y2,
y0*y2 + x1 + x2 + y0 + y1 + 1,
y1*y2 + x2 + y0]

If we post-process these polynomials (groebner=True), we get 21 quadratic equations
and one cubic equation for the S-Box which have a nice algebraic structure.

Putting it all together

▸ We have equations for the S layer, P layer and the key addtion.
▸ �e key schedule is similar and has one/two S-boxes.
▸ For each round we introduce 2 ⋅ 64 new state variables for the S layer.
▸ Adding key schedule and key variables we get 132 ⋅Nr + 80 variables
▸ On ther other hand, we get (22 ⋅ 16 + 22 + 64)Nr + 64 equations

sage: s=’https :// bitbucket.org/malb/research -snippets/raw/tip/present.py’
sage: load(s)
sage: p = PRESENT(Nr=31)
sage: F,s = p.polynomial_system (); F
Polynomial System with 13642 Polynomials in 4172 Variables

Solving this system means recovering the key . . .

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Solver Families

�ree families of algorithms are popular in cryptography:

1. SAT solvers: MiniSat2, CryptoMiniSat . . .
2. Gröbner basis methods: Buchberger’s algorithm, F4 , F5 , . . .
3. Mixed Integer (Linear) Solvers: SCIP, CPLEX, Gurobi, . . .

It is very useful to understand a bit how these solvers work.

not a valid analysis:
“We put our equations into Magma and it ran out of memory.”

Gröbner Bases I
for Cryptographers

▸ Fq is a �nite �eld of order q.
▸ P = Fq[x1 , . . . , xn].
▸ I is an ideal ⊂ P. �at is, f , g ∈ I → f + g ∈ I and f ∈ P, g ∈ I → f ⋅ g ∈ I .
▸ ⟨f1 , . . . , fm⟩ is the ideal spanned by f1 , . . . , fm .

sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: I = ideal(x*y + z, y^3 + 1, z^2 - x*5 - 1)
sage: (x*y + z) + (y^3 + 1) in I
True
sage: x*z*(z^2 - x*5 - 1) in I
True

A familiar example:
sage: I = ideal ([5]); I
Principal ideal (5) of Integer Ring
sage: 5 + 10 in I
True
sage: 3*5 in I
True

Gröbner Bases II
for Cryptographers

▸ A term order decides how we compare monomials, e.g., is xy or y3 bigger
(e.g. degree or variable �rst)?
sage: P.<x,y,z> = PolynomialRing(GF(127), order=’lex’)
sage: x*y > y^3 # variable then degree
True
sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: x*y > y^3 # degree then variable
False

▸ M(f) is the set of all monomials in f .
▸ LM(f) is the leading or largest monomial in f .

sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: f = x*y + x + 3
sage: f.lm()
x*y
sage: f.monomials ()
[x*y, x, 1]

Gröbner Bases III
for Cryptographers

De�nition (Gröbner Basis)
Let I be an ideal in F[x1 , . . . , xn] and �x a monomial ordering. A �nite subset

G = {g1 , . . . , gm} ⊂ I

is said to be a Gröbner basis of I if for any f ∈ I there exists gi ∈ G such that

LM(gi) ∣ LM(f).

Gröbner Bases IV
for Cryptographers

Gröbner bases generalise greatest common divisors over F[x] and
row echelon forms over Fn .
sage: P.<x,y,z> = PolynomialRing(GF(7), order=’deglex ’)
sage: F = Sequence ([-x*y - x*z - 2*z^2 - 2*y,

x*y + 2*y*z - 2*z^2 - x - 2*y,
z^2 + 2*x + 3*y - 3*z - 3])

sage: map(lambda f: f.lm(), F.groebner_basis ())
[y^3, y^2*z, x^2, x*y, x*z, z^2]

GCD
sage: R.<x> = PolynomialRing(GF(7))
sage: f = x^2 + 6
sage: I = Ideal(map(P, [R.random_element () * f for _ in range (5)]))
sage: I.groebner_basis ()
[x^2 - 1]

Echelon Form
sage: F = Sequence ([-3*y, -2*x - y - 3*z + 2, x + y + 2*z - 1])
sage: F.groebner_basis ()
[x - 1, y, z]
sage: A,v = F.coefficient_matrix ()
sage: A.echelonize ()
sage: (A*v).T
[x - 1 y z]

Gröbner Bases V
for Cryptographers

As a warm-up, consider a linear system of equations over F127[x, y, z].

f = 26y + 52z + 62 = 0
g = 54y + 119z + 55 = 0
h = 41x + 91z + 13 = 0

A�er Gaussian elimination:

f ′ = x + 29 = 0
g′ = y + 38 = 0
h′ = z + 75 = 0

⎛
⎜
⎝

0 26 52 62
0 54 119 55
41 0 91 13

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0 29
0 1 0 38
0 0 1 75

⎞
⎟
⎠

�us, x = −29, y = −38 and z = −75 is a solution. We know this because Gaussian
elimination produced small enough elements (z + 75) such that we can simply read of
the solution.

Gröbner Bases VI
for Cryptographers

Now consider two polynomials in F127[x, y, z] with term ordering deglex.

f = x2 + 2xy − 2y2 + 14z2 + 22z
g = x2 + xy + y2 + z2 + x + 2z

f = x2 + 4y2 − 12z2 + 2x − 18z
g′ = xy + −3y2 + 13z2 − x + 20z

(1 2 −2 14 0 22
1 1 1 1 1 2)

(1 0 4 −12 2 −18
0 1 −3 13 −1 20)

Gaussian elimination still “reduces” the system.

Gröbner Bases VII
for Cryptographers

�is approach fails for

f = x2 − 2xy − 2y2 + 14z2 ,
g = x + y + 2z.

since x is not a monomial of f .

However, x divides two monomials of f : x2 and xy.

To account for those include multiplesm ⋅ g of g such that

LM(m ⋅ g) = m ⋅ LM(g) ∈M(f).

Gröbner Bases VIII
for Cryptographers

f = x2 − 2xy − 2y2 + . . .
x ⋅ g = x2 + xy . . .
y ⋅ g = xy + y2 + . . .

g = x + y + 2z

f ′ = x2 + 4yz + 14z2 ,
h1 = xy + 2xz + −4yz − . . . ,
h2 = y2 − 2xz + 6yz + . . . ,
g = x + y + 2z

⎛
⎜⎜⎜
⎝

1 −2 −2 0 0 14 0 . . .
1 1 0 2 0 0 0 . . .
0 1 1 0 2 0 0 . . .
0 0 0 0 0 0 1 . . .

⎞
⎟⎟⎟
⎠

⎛
⎜⎜⎜
⎝

1 0 0 0 . . . 0 . . .
0 1 0 2 . . . 0 . . .
0 0 1 −2 . . . 0 . . .
0 0 0 0 . . . 1 . . .

⎞
⎟⎟⎟
⎠

Let’s call the preprocessing we performed “symbolic preprocessing” . . .but that alone
is still not enough to solve the system.

Gröbner Bases IX
for Cryptographers

Finally, consider

f = yx + 1,
g = zx + 2.

Neither LM(f) nor LM(g) divides any monomial in the other polynomial. However,
we have

zf − yg = z(yx + 1) − y(zx + 2),
= xyz + z − xyz − 2y,
= z − 2y.

We constructed multiples of f and g such that when we subtract them their leading
terms cancel out and something smaller is produced: we constructed an
S-polynomial.

Gröbner Bases X
for Cryptographers

De�nition (S-Polynomial)
Let f , g ∈ F[x1 , . . . , xn] be non-zero polynomials.

▸ Let xγ be the least common multiple of LM(f) and LM(g), written as

xγ = LCM(LM(f), LM(g)).

▸ �e S-polynomial of f and g is de�ned as

S(f , g) = xγ

LT(f) ⋅ f −
xγ

LT(g) ⋅ g .

Gröbner Bases XI
for Cryptographers

It is su�cient to consider only S-polynomials since any reduction of leading terms
can be attributed to S-polynomials.

[Buc65] Bruno Buchberger
Ein Algorithmus zum Au�nden der Basiselemente des Restklassenrings nach
einem nulldimensionalen Polynomideal,
Phd�esis at Universität Innsbruck, 1965.

[Buc06] Bruno Buchberger
Bruno Buchberger’s PhD thesis 1965: An algorithm for �nding the basis elements
of the residue class ring of a zero dimensional polynomial ideal
Journal of Symbolic Computation, 41:3-4, p. 475-511, 2006.

Gröbner Bases XII
for Cryptographers

Input: F = [f1 , . . . , fm] – list of polynomials
Output: a Gröbner basis for ⟨f1 , . . . , fm−1⟩

1 begin
2 while True do
3 F ←multiply all pairs fi , fj ∈ F bymi ,mj such that LM(mifi) = LM(mjfj);
4 F ← perform “symbolic preprocessing” on F ∪ F;
5 F̃ ← peform Gaussian elimination on F ;
6 F ← F ∪ {f ∈ F̃ with ∀g ∈ F we have LM(g) ∤ LM(f)};
7 if F didn’t change in the last iteration then
8 return F;

Algorithm 1: simpli�ed F4

Gröbner Bases XIII
for Cryptographers

1 begin
2 while True do
3 F ←multiply all pairs fi , fj ∈ F bymi ,mj such that LM(mifi) = LM(mjfj);
4 F ← perform “symbolic preprocessing” on F ∪ F;
5 F̃ ← peform Gaussian elimination on F;
6 F ← F ∪ {f ∈ F̃ with ∀g ∈ F we have LM(g) ∤ LM(f)};
7 if F didn’t change in the last iteration then
8 return F;

Buchberger select one pair in line 3 and use polynomial division instead of Gaussian
elimination in line 5; implemented everywhere

F4 use Buchberger’s criteria in line 3 to avoid useless pairs (= zero rows in the
matrix); implemented in Magma, PolyBoRi, FGB

F5 use criteria in lines 3 and 4 such that all matrices have full rank under some
assumption; implementation worked on in Singular

Gröbner Bases XIV
for Cryptographers

1 begin
2 while True do
3 F ←multiply all pairs fi , fj ∈ F bymi ,mj such that LM(mifi) = LM(mjfj);
4 F ← perform “symbolic preprocessing” on F ∪ F;
5 F̃ ← peform Gaussian elimination on F;
6 F ← F ∪ {f ∈ F̃ with ∀g ∈ F we have LM(g) ∤ LM(f)};
7 if F didn’t change in the last iteration then
8 return F;

(Mutant)XL multiply by everything up to some degree in line 3 and skip line 4 (worse
than Algorithm 1 because of redundancies)

XSL make some (very bad!) choice in line 3 and line 4 (worse than Algorithm 1
because of bad choices)

ElimLin always stay at degree 2→ line 4 + line 5 (less powerful than Algorithm 1)

Gröbner Bases in Sage I

Let’s play a bit with Gröbner bases in Sage:
sage: K = GF (32003)
sage: T = TermOrder("deglex" ,2) + TermOrder("deglex" ,2)
sage: P.<w,x,y,z> = PolynomialRing(K,order=T)
sage: I = sage.rings.ideal.Katsura(P)
sage: [g.lm() for g in I.groebner_basis ()] # Singular
[w, x, y*z^3, z^4, y^3, y^2*z]
sage: I.dimension () # finite number of solutions
0
sage: V = I.variety (); V # solutions
[{y: 0, z: 0, w: 1, x: 0}, {y: 0, z: 10668, w: 10668, x: 0}]
sage: J = I.change_ring(P.change_ring(QQ)) # over the rationals
sage: J.variety ()
[{y: 0, z: -32002/3, w: -32002/3, x: 0}, {y: 0, z: 0, w: -32002, x: 0}]
sage: len(J.variety(CC)) # over the complex numbers
8

Gröbner Bases in Sage II

We estimate the complexity before solving:
sage: n = 10; P = PolynomialRing(GF(32003) , n, ’x’)
sage: F = [P.random_element () for _ in range(P.ngens ()+2)]
sage: s = random_vector(GF(32003) ,n)
sage: I = Ideal(f-f(*s) for f in F)
sage: D = I.degree_of_semi_regularity ()
sage: D, log(binomial(n + D, n)^3, 2).n() # prediction: degree six
6, 34.65...
sage: I.groebner_basis(’magma ’,prot=’sage’)
...
Leading term degree: 4. Critical pairs: 178.
Leading term degree: 5. Critical pairs: 515.
Leading term degree: 5. Critical pairs: 1155.
Leading term degree: 3. Critical pairs: 2845.
Leading term degree: 2. Critical pairs: 2850.
Leading term degree: 3. Critical pairs: 2795.
Leading term degree: 4. Critical pairs: 2605.
Leading term degree: 5. Critical pairs: 1609.
Leading term degree: 6. Critical pairs: 864 (all pairs ...
Leading term degree: 7. Critical pairs: 4 (all pairs ...
Leading term degree: 8. Critical pairs: 1 (all pairs ...

Highest degree reached during computation: 5.
[x0 + 7334, x1 - 12304 , x2 - 7977, x3 - 8365, x4 - 7982, x5 + 676, ...]

Gröbner Bases in Sage III

Sage has a very good implementation of Gröbner basis computations over
F2[x1 , . . . , xn]/⟨x21 + x1 , . . . , x2n + xn⟩ thanks to PolyBoRi.
sage: B = BooleanPolynomialRing (50,’x’,order=’deglex ’)
sage: s = random_vector(GF(2) ,50)
sage: F = [B.random_element () for _ in range (500)]
sage: I = Ideal(f-f(*s) for f in F)
sage: G = I.groebner_basis (); G # PolyBoRi
Polynomial Sequence with 50 Polynomials in 50 Variables
sage: sorted(G)[0], s[0]
(x0 + 1, 1)
sage: I.variety ()
[{x40: 0, x42: 1, x44: 0, ..., x23: 0, x25: 1}]

SAT Solvers I

▸ �e SAT problem is a decision problem, whose instance is a Boolean expression
written using only AND, OR, NOT, variables, and parentheses.

▸ �e question is: given the expression, is there some assignment of TRUE and
FALSE values to the variables that will make the entire expression true?

▸ A literal is either a variable or the negation of a variable
▸ A clause is a disjunction of literals (∨ = OR).
▸ A formula is in Conjunctive Normal Form (CNF) if is a conjunction (∧ =
AND) of clauses.

x1 ∨ ¬x2 ∨ x3
¬x1 ∨ ¬x3

sage: from sage.sat.solvers import CryptoMiniSat
sage: cms = CryptoMiniSat ()
sage: cms.add_clause((1, -2, 3))
sage: cms.add_clause((-1, -3))

SAT Solvers II

We can solve (Boolean) polynomial systems using SAT solvers using ANF to CNF
conversion:
sage: import sage.sat.converters as satconv
sage: from satconv.polybori import CNFEncoder
sage: from sage.sat.solvers import CryptoMiniSat
sage: B.<a,b> = BooleanPolynomialRing ()
sage: cms = CryptoMiniSat ()
sage: ce = CNFEncoder(cms , B)
sage: ce([a*b + b +1])
[None , a, b]
sage: cms.clauses ()
[((2,), False , None), ((-1,), False , None)]

Gregory V. Bard, Nicolas T. Courtois, and Chris Je�erson.
E�cient Methods for Conversion and Solution of Sparse Systems of Low-Degree
Multivariate Polynomials over GF(2) via SAT-Solvers.
Cryptology ePrint Archive, Report 2007/024, 2007.

SAT Solvers III

1 begin
2 while True do
3 simplify clauses;
4 if contradiction then
5 backtrack;
6 if solution then
7 return ;
8 guess something;

▸ SAT solvers decide satis�ability, hence they
will terminate once one solution is found.

▸ . . . in contrast to Gröbner basis methods.
▸ SAT solvers are randomised: one success does
not constitute an average running time.

▸ Run hundreds/thousands of experiments with
lots of re-randomisation.

▸ �e conversion from ANF to CNF can make a
huge di�erence, Sage supports two strategies
at the moment.

▸ Di�erent solvers behave di�erently.
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: sr = mq.SR(1,2,2,4,gf2=True ,polybori=True)
sage: set_random_seed (1337^3)
sage: F,s = sr.polynomial_system ()
sage: len(solve_sat(F))
1
sage: len(solve_sat(F, n=infinity))
3

SAT Solvers in Sage I

Sage has an interface for SAT solving via CryptoMiniSat which supports XOR clauses
sage: from sage.sat.solvers import CryptoMiniSat
sage: cms = CryptoMiniSat(verbosity =3)
sage: cms.add_clause ((1,2,-3)) # x1 OR x2 OR -x3
sage: cms.add_clause ((1,-2,3)) # x1 OR -x2 OR x3
sage: cms.add_xor_clause ((1,2,3), 0) # (x1 XOR x2 XOR x3 = 1)
sage: cms.add_xor_clause ((1,3), 1) # (x1 XOR x3 = 0)
sage: cms()
...
(None , True , True , True)

or via any solver supporting theDIMACS format
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: F,s = mq.SR(1,1,1,4,gf2=True ,polybori=True). polynomial_system ()
sage: solve_sat(F, solver=sage.sat.solvers.RSat)
[{k003: 0, k002: 0, k001: 1, k000: 1, ...,

k103: 0, k102: 1, k101: 0, k100: 0}]

SAT Solvers in Sage II

Sage can take care of the ANF to CNF conversion details:
sage: load(’https :// bitbucket.org/malb/research -snippets/raw/tip/present.py’)
sage: from sage.sat.boolean_polynomials import solve as solve_sat
sage: F,s = PRESENT(Nr=2). polynomial_system ()
sage: sprime = solve_sat(F,s_verbosity =3)

. . . and also learn new equations using a SAT solver with early abort:
sage: set_random_seed (2300)
sage: sr = mq.SR(1,4,4,4,gf2=True ,polybori=True)
sage: F,s = sr.polynomial_system ()
sage: from sage.sat.boolean_polynomials import learn as learn_sat
sage: H = learn_sat(F, s_maxrestarts =20, interreduction=True)
sage: H[-1]
k001503*s021*x011502 + s021*x011502 + k001503*x011502 + x011502

Mixed Integer Programming I

▸ MIP minimises (or maximises) a linear function cTx subject to linear equality
and inequality constraints given by linear inequalities

Ax ≤ b.

▸ We restrict some variables to integer values while others may take any real values.
▸ �emain advantage of MIP solvers compared to other branch-and-cut solvers
(SAT solvers etc.) is that they can relax the problem to an (easy) �oating point
problem.

▸ �is allows to obtain lower and upper bounds for cTx which can be used to cut
search branches.

▸ �e non-linear generalisation is called Constraint Integer Programming (CIP).
▸ Solvers: CPLEX & Gurobi (accademic licenses available), SCIP (≈ open-source)

Mixed Integer Programming II

We can convert a polynomial f ∈ F2[x1 , . . . , xn] to MIP and then use an o�-the-shelf
MIP solver (in this example SCIP).
sage: from sage.libs.scip.scip import SCIP # trac 10879
sage: B.<a,b,c> = BooleanPolynomialRing ()
sage: f = a*c + a + b + c + 1
sage: s = SCIP(maximization=False ,name="icebreak")
sage: boolean_polynomials(s, Sequence ([f]))
down: {b: 1, c: 0, a: 2}

up: {0: c, 1: b, 2: a}
sage: _ = s.solve()
sage: s.get_all_solutions ()
[({0: 0.0, 1: 1.0, 2: 0.0, 3: 0.0}, 1.0)]

Julia Borgho�, Lars R. Knudsen, and Mathias Stolpe.
Bivium as a Mixed-Integer Linear programming problem.
In Matthew G. Parker, editor, Cryptography and Coding – 12th IMA International
Conference, volume 5921 of Lecture Notes in Computer Science, pages 133–152, Berlin,
Heidelberg, New York, 2009. Springer Verlag.

Mixed Integer Programming in Sage

Sage also has a highlevel interface to Mixed Integer Linear solving
sage: g = graphs.PetersenGraph ()
sage: p = MixedIntegerLinearProgram(maximization=True)
sage: b = p.new_variable ()
sage: p.set_objective(sum([b[v] for v in g]))
sage: for (u,v) in g.edges(labels=None):
... p.add_constraint(b[u] + b[v], max=1)
sage: p.set_binary(b)
sage: p.solve(objective_only=True)
4.0

which supports many backends: GLPK, Coin, Gurobi, CPLEX.

Outline

Sage
Introduction
Highlevel Features
Fields & Areas

Algebraic Techniques
Introduction
Equations
Solvers
. . . for the Lazy Cryptographer

Here’s another picture of a kitten

Implications I
. . . or “I cannot be bothered to work this out by hand”

▸ Consider an arbitrary function f ∶ Fn
2 → Fm

2 and its boolean polynomial
representation f1 , . . . , fm

▸ Let x1 , . . . xn be the input variables and y1 , . . . , ym the output variables
▸ Consider the ideal I = ⟨f1 , . . . , fm⟩:

▸ Every member g of this ideal is a combination of f1 , . . . , fm .
▸ If f1 , . . . , fm vanish, so does g.

f1 , . . . , fm implies g

“If f1 , . . . , fm hold, so does g”.

Implications II
. . . or “I cannot be bothered to work this out by hand”

Example: �e Present S-box: [c, 5, 6, b, 9, 0, a, d, 3, e, f, 8, 4, 7, 1, 2]:

y0 = x0x1x3 + x0x2x3 + x0 + x1x2x3 + x1x2 + x2 + x3 + 1,
y1 = x0x1x3 + x0x2x3 + x0x2 + x0x3 + x0 + x1 + x2x3 + 1,
y2 = x0x1x3 + x0x1 + x0x2x3 + x0x2 + x0 + x1x2x3 + x2 ,
y3 = x0 + x1x2 + x1 + x3 .

sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: B.<y0,y1 ,y2,y3 ,x0,x1,x2 ,x3> = BooleanPolynomialRing(order=’lex’)
sage: X = (x0,x1 ,x2,x3); Y = (y0,y1 ,y2,y3)
sage: S.polynomials(X=X, Y=Y, degree=3, groebner=True)
[y0 + x0*x1*x3 + x0*x2*x3 + x0 + x1*x2*x3 + x1*x2 + x2 + x3 + 1,
y1 + x0*x1*x3 + x0*x2*x3 + x0*x2 + x0*x3 + x0 + x1 + x2*x3 + 1,
y2 + x0*x1*x3 + x0*x1 + x0*x2*x3 + x0*x2 + x0 + x1*x2*x3 + x2,
y3 + x0 + x1*x2 + x1 + x3]

Implications III
. . . or “I cannot be bothered to work this out by hand”

▸ Let c be a condition on the input variables (in polynomial form).

Example: x0 = 1 sage: c = x0 + 1

Implications IV
. . . or “I cannot be bothered to work this out by hand”

▸ Calculate a Gröbner basis for ⟨c, f1 , . . . , fm⟩ in an elimination ordering which
eliminates input variables �rst.
sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: BPRing = BooleanPolynomialRing
sage: T = TermOrder(’lex’)
sage: B.<x0 ,x1,x2,x3 ,y0,y1,y2 ,y3> = BPRing(order=T) # x > y
sage: X = (x0,x1 ,x2,x3); Y = (y0,y1 ,y2,y3)
sage: F = Sequence(S.polynomials(X=X, Y=Y, degree =3))
sage: c = x0 + 1
sage: F += [c]
sage: G = F.groebner_basis ()

Implications V
. . . or “I cannot be bothered to work this out by hand”

▸ �e smallest elements of this Gröbner basis will be polynomials with a
minimum number of input variables (if possible, none). Call them g0 , . . . , gr−1 .

▸ �ese polynomials are implied by the polynomials f1 , . . . , fm and the condition c.

“If f1 , . . . , fm and the condition c hold, so do g1 , . . . , gr”

sage: G[-1]
y1*y2*y3 + y1*y3

Implications VI
. . . or “I cannot be bothered to work this out by hand”

▸ Moreover, all on the output bits that are implied by f under condition c are
combinations of g1 , . . . , gr

▸ If we pick the term ordering right, g1 , . . . , gr have minimal degree.

For a given function f under a precondition c we can calculate all conditions on the
output bits thatmust hold.

sage: S = mq.SBox (12,5,6,11,9,0,10,13,3,14,15,8,4,7,1,2)
sage: BPRing = BooleanPolynomialRing
sage: T = TermOrder(’deglex ’ ,4) + TermOrder(’deglex ’ ,4) # order!
sage: B.<x0,x1 ,x2,x3 ,y0,y1,y2 ,y3> = BPRing(order=T) # x > y
sage: X = (x0,x1 ,x2,x3); Y = (y0,y1 ,y2,y3)
sage: F = Sequence(S.polynomials(X=X, Y=Y, degree =3))
sage: c = x0 + 1
sage: F += [c]
sage: G = F.groebner_basis ()
sage: G[4:]
[y1*y2*y3 + y1*y3,
y0*y1 + y1*y2 + y2*y3 + y0 + y1 + y2 + y3 + 1,
y0*y2 + y1*y2 + y2*y3 + y0 + y1 + y2 + y3 + 1,
y0*y3 + y1*y3 + y2*y3 + y0 + y1 + y2 + y3 + 1]

Implications VII
. . . or “I cannot be bothered to work this out by hand”

Applications:

Di�erential: algebraic description of all possible output di�erences under some
input di�erence.

Cond. Di�.: conditional relations on the plaintext and the key bits.
Integral: algebraic descriptions on the output bits a�er r rounds.

Martin Albrecht, Carlos Cid, �omas Dullien, Jean-Charles Faugère, and Ludovic Perret.
Algebraic precomputations in Di�erential and Integral Cryptanalysis.
In INSCRYPT 2010 – Information Security and Cryptology 6th International Conference,
Lecture Notes in Computer Science, 18 pages, October 2010.

Algebraic Techniques and Integral Cryptanalysis I

In integral or higher-order di�erential cryptanalysis the attacker encrypts plaintexts
with some structure such that the output (a�er some rounds) also has some
(algebraic) structure.

Algebraic Techniques and Integral Cryptanalysis II

▸ In [ZRHD08] bit-pattern based integral attacks against up to 7 rounds of
Present are proposed, based on a 3.5 round distinguisher.

▸ �e attacker prepares 16 chosen plaintexts which agree in all bit values except the
bits at the positions 51, 55, 59, 63.

▸ �ese four bits take all possible values (0, 0, 0, 0), (0, 0, 0, 1), . . . , (1, 1, 1, 1).
▸ �en he input bits to the 4th round are then balanced, i.e., the sum of all bits at
the same bit position across all 16 encryptions is zero.

▸ If Xi,j,k denotes the k-th input bit of the j-th round of the i-th encryption, we
have that

0 =
15

∑
i=0

Xi,4,k for 0 ≤ k < 64.

Muhammad Reza Z’Aba, Håvard Raddum, Matt Henricksen, and Ed Dawson.
Bit-pattern based integral attacks.
In Kaisa Nyberg, editor, Fast So�ware Encryption 2008, number 5086 in Lecture
Notes In Computer Science, pages 363–381, Berlin, Heidelberg, New York, 2008.
Springer Verlag.

Algebraic Techniques and Integral Cryptanalysis III

I presume the result in [ZRHD08] was found by carefully tracing relations between
bits through the cipher, I am too lazy for that.

▸ Setup an equation system for the 16 plaintexts as in [ZRHD08],
▸ run a Gröbner basis computation up to degree 2 under a term ordering where
variables from small rounds are eliminated �rst.

▸ �is produces 500 linear polynomials in Xi,4,k and 26 linear polynomials in Xi,5,k

Martin R. Albrecht
Algorithmic Algebraic Techniques and their Application to Block Cipher
Cryptanalysis
Phd�esis at University of London, 2010

Algebraic Techniques and Integral Cryptanalysis IV

Cipher Method #P Wall time
Present-80-5 HODC 5 ⋅ 24 ≈ 225.7 CPU cycles
Present-80-5 AHODC 24 ≈ 223.3 CPU cycles
Present-80-6 HODC 222.4 ≈ 241.7 CPU cycles
Present-80-6 AHODC 220 ≈ 239.3 CPU cycles
Present-80-7 HODC 224.4 ≈ 2100.1 CPU cycles
Present-80-7 AHODC 221.9 ≈ 297.8 CPU cycles

KTANTAN32-65 AHODC 25 59004.10 s

Designing Linear Layers I
. . . or “I cannot be bothered to design an algorithm for that”

▸ Assume we have a (sparse) n × nmatrix over F2 with a good di�erential branch
number.

▸ We can use this matrix to construct an 2n × 2nmatrix over F2 with the same
number of ones per row/column and branch number.

⎛
⎜
⎝

a1,1 . . . a1,n
⋮ ⋱ ⋮

an,1 . . . an,n

⎞
⎟
⎠

⎛
⎜
⎝

b1,1 . . . b1,n
⋮ ⋱ ⋮

bn,1 . . . bn,n

⎞
⎟
⎠
⇒

⎛
⎜⎜⎜⎜⎜⎜
⎝

A1,1 0 . . . A1,n 0
0 b1,1 . . . 0 b1,n
⋮ ⋱ ⋮

An,1 0 . . . An,n 0
0 bn,1 . . . 0 bn,n

⎞
⎟⎟⎟⎟⎟⎟
⎠

▸ We want to avoid that both ai,j = bi,j=0 to maximise di�usion.

Task
Find B = P ⋅ A ⋅Q such that di�usion is maximised where P,Q are permutations.

Designing Linear Layers II
. . . or “I cannot be bothered to design an algorithm for that”

We would go about this problem something like this:
1. Try a bunch of random permutations and hope to get lucky (incomplete)
2. Try some heuristic, such as local optimisation (incomplete)
3. Run an exhaustive search over all permutation matrices, prunning search trees

based on �ll-in (complete, but takes a while to implement)

. . . or we can recognise this as a Constraint Integer Programming problem

Designing Linear Layers III
. . . or “I cannot be bothered to design an algorithm for that”

We consider the matrices

P =
⎛
⎜
⎝

p1,1 . . . p1,n
⋮ ⋱ ⋮

pn,1 . . . pn,n

⎞
⎟
⎠
,Q =

⎛
⎜
⎝

q1,1 . . . q1,n
⋮ ⋱ ⋮

qn,1 . . . qn,n

⎞
⎟
⎠
.

where pi,j , qi,j are boolean variables and denote

⎛
⎜
⎝

b1,1 . . . b1,n
⋮ ⋱ ⋮

bn,1 . . . bn,n

⎞
⎟
⎠
= P ⋅ A ⋅Q,

We add
1. quadratic constraints expressing bi,j in terms of P ⋅ A ⋅Q.
2. linear constraints that all rows/columns of P and Q have exactly one 1 per

row/column.
3. OR constraints vi,j = ai,j ∨ bi,j .

We then maximize∑ vi,j using an o�-the-shelf CIP solver such as SCIP.

Designing Linear Layers IV
. . . or “I cannot be bothered to design an algorithm for that”

▸ Including documentation, error checking, comments and generalised for
arbitrarily many permutations of A this takes about 100 lines of code to
implement in Sage.

▸ It will run (much) slower than a dedicated algorithm or implementation.

Trade O�
At what ratio do you “trade” CPU cycles and your time?

Algebraic Techniques and Side-Channel Cryptanalysis I
. . . or full ciphers are too hard

▸ Solving full ciphers seems way beyond what algebraic attacks can deliver.
▸ Side-channel attacks provide information about the internal state of an
encryption operation to the attacker.

▸ �is information can then be used to recover key information.

Algebraic Techniques and Side-Channel Cryptanalysis II
. . . or full ciphers are too hard

�is means,
▸ tracking information from the leak back to the key,
▸ where o�en only a limited number of readings are available,

. . . so we might want to throw algebraic solvers at the problem.

It is always possible to �nd a dedicated attack that is at least as good as the generic
“algebraic side-channel” attack and plausibly one can o�en �nd dedicated attacks
which are strictly better. Yet, the question is how hard it is to �nd these attacks.

Algebraic Techniques and Side-Channel Cryptanalysis III
. . . or full ciphers are too hard

Example: Power readings reveal information about S-box bits, combine these with
cipher description and solve using a SAT solver.

Mathieu Renauld and Francois-Xavier Standaert.
Algebraic Side-Channel Attacks.
In INSCRYPT 2009 – Information Security and Cryptology 5th International
Conference, volume 6151 of Lecture Notes in Computer Science, pages 393-410,
Berlin, Heidelberg, New York, 2009. Springer Verlag.

Algebraic Techniques and Side-Channel Cryptanalysis IV
. . . or full ciphers are too hard

Example: Cold boot attacks recover noisy versions of the key schedule output,
recover noise-free version via polynomial system solving with noise via Mixed Integer
Programming.

Martin Albrecht and Carlos Cid.
Cold Boot Key Recovery by Solving Polynomial Systems with Noise
In ACNS 2011 – 9th International Conference on Applied Cryptography and
Network Security, in Lecture Notes in Computer Science, Berlin, Heidelberg, New
York, 2011. Springer Verlag.

Algebraic Techniques and Side-Channel Cryptanalysis V
. . . or full ciphers are too hard

Example: Fault attacks introduce a fault in the encryption and exploit the result
wrong result, the key recovery can be accomplished using a SAT solver.

Philipp Jovanovic and Martin Kreuzer and Ilia Polian
An Algebraic Fault Attack on the LED Block Cipher
Cryptology ePrint Archive, Report 2012/400

Questions?

�ank You!

	Sage
	Introduction
	Highlevel Features
	Fields & Areas

	Algebraic Techniques
	Introduction
	Equations
	Solvers
	…for the Lazy Cryptographer

